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INTRODUCTION

Nitrous oxide (N2O) is one of the important green�
house gases responsible for the recent climate changes
on the Earth [37, 38, 59, 65]. Nowadays, the contribu�
tion of N2O to the radiation activity of main greenhouse
gases (CO2, CH4, N2O) is only 6% [78]. However, N2O
is the most stable (long�living) gas; its residence time in
the atmosphere is almost 160 years [37]. This gas partic�
ipates in reactions that destroy the ozone shield of the
planet, and its global warming potential is about
300 times higher than the CO2 potential [72]. 

The N2O concentration in the atmosphere of the
Earth reached, on the average, 324.2 ± 0.1 ppb,
exceeding that by more than 1 ppb in 2010. For the last
ten years, the mean annual N2O concentration in the
atmosphere increased with the rate of 0.78 ppb due to
anthropogenic impact and, primarily, to agricultural
production [78]. Soils are the main source of N2O
entering the atmosphere (about 65%) [5, 20, 66]. 

Soil microorganisms are of great importance in the
emission of greenhouse gases and control of the gaseous
composition of the atmosphere [26]. Nitrous oxide
results from the processes of nitrification, denitrifica�
tion, and chemodenitrification [61, 71, 79]; the first two
processes are the basic ones. The N2O formation
depends on the hydrothermal conditions (temperature,
moisture), the physicochemical properties of soils, and
the type of land use: application of mineral and organic
fertilizers, vegetation, liming, and mechanical treat�
ment of soils [4, 8–10, 39, 64]. The N2O flux from agri�
cultural soils, including also the arable ones, is stronger
and more variable in time and space (complex interac�
tions between physical, chemical, and biological
parameters) as compared to that from natural ecosys�
tems [15, 20, 25, 30, 52, 65]. The volumes of N2O emis�
sion were noted to be closely associated with the nitro�
gen cycle and can characterize the degree of its distur�
bance [5, 54, 73]. 
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The N2O production from the soil resulting from its
formation and absorption is called net production [5].
Net production depends on the rate of N2O forma�
tion, its diffusion in soil layers, and absorption (reduc�
tion) by denitrifying agents [16]. The rate and scope of
this process are determined in natural (uncontrolled)
and laboratory (controlled) conditions. However,
there are no clear guidelines for the evaluation of this
process in the laboratory.

For better understanding of the regulation of N2O
emission in the atmosphere, the relative contribution of
nitrification and denitrification should be discrimi�
nated. The main requirement of this differentiation is
related to the selective inhibition of one process without
any effect on the other. The contribution of nitrification
and denitrification into the N2O emission by different
soils is still poorly known [7, 68]. One of the methods to
specify these processes is associated with the use of acet�
ylene (C2H2). The high partial pressure of C2H2 (5–
10 kPa) in a test vessel inhibits N2O�reductase of deni�
trifiers (N2 is not formed), which allows estimation of
the contribution of denitrification to the N2O emission
from the soil [42, 82]. However, C2H2 can stimulate
mineralization of soil organic matter indirectly, increas�
ing the rate of denitrification [32]. In addition, soil
microorganisms can absorb acetylene [11, 81] and,
hence, reduce its concentration resulting in the incom�
plete inhibition of denitrification. There are studies
showing that, in contrast, the low partial pressure of
C2H2 (0.1–10 Pa) can inhibit autotrophic nitrifica�
tion, while not affecting the N2O�reductase of denitri�
fiers [17, 35, 77]. The method proposed has a definite
advantage for the estimation of the N2O production by
autotrophic nitrifying agents in the soil. Some special�
ists discuss the complexity of this approach mainly
related to the selection of a suitable low concentration
of C2H2 (inhibition of nitrification) for each soil stud�
ied [43]. 

Previously, it was believed that the formation of
N2O by soils occurred as a result of the activity only of
prokaryote microorganisms (mainly of bacteria).
However, the recent investigations showed that in this
process mycelial fungi also played a significant role
[22, 23, 46, 47, 63, 80]. Fungi make up a high share in
the total microbial biomass and are capable of carrying
out nitrification and denitrification [46, 47]. It is wor�
thy of note that the assessment of the contribution of
fungi and bacteria to the N2O production is related to
a number of methodological problems, including the
application of selective inhibitors of respiration for
these groups of microorganisms. 

The objectives of this work were the following:
(1) the approbation of experimental (laboratory) con�
ditions for the highest net production of N2O by the
soil provided by its moisture and high supply of carbon
and nitrogen from additional sources; (2) the determi�
nation of interrelationship between the net production
of N2O and the microbial biomass along the profile,
associated ecosystem, and spatial gradients; (3) the

subdivision of the sources of N2O production into
nitrification and denitrification ones; (4) the estima�
tion of the contribution of fungi and bacteria to the
production of N2O by soils.

OBJECTS AND METHODS

Soils (podzol, rzhavozem, soddy�podzolic soil, gray
soil, leached chernozem, burozem, and carbolithozem)
of natural, arable, and fallow ecosystems in Kostroma,
Vladimir, Moscow, Kaluga, and Voronezh oblasts and
Krasnodar region (a total of 48 localities) were the
objects for studies. In August–September of 2006–
2009, soil samples were taken from the upper mineral
0–10�cm layer on a flat plot (10 × 10 m) by the method
of envelope. The litter was not collected. In Moscow
(Zvenigorod), Vladimir, and Kaluga (the Kaluzhskie
zaseki Reserve) oblasts, samples were also taken along
the soil profile. The averaged soil samples (53) were pre�
pared. They were marked, delivered to the laboratory
and stored (at 8–10°C, natural moisture) in plastic bags
with air exchange for 4–6 weeks before the tests. Coarse
plant residues were removed from the samples. Then,
the samples were sieved (2–3 mm mesh). One part of
the sample was dried in the air, the other was incubated
during 7 days at 22°C and 55–60% of water holding
capacity. 

Net production of N2O by soil. A soil sample (2 or 3 g
from the upper or lower mineral horizons, respectively)
was placed in a vessel (15 mL), then 0.1 mL/g of water
or solution of glucose (2 mg/ g), and solution of ammo�
nium sulfate (0.08 mg N–(NH4)2SO4/g) were added to
the vessels together and separately. The vessels were her�
metically closed and incubated for 24 h at 22°C. The
rate of N2O production was determined by gas�solid
chromatography (chromatograph LKhM�2000, Chro�
matograph company, Moscow: an electron capture
detector (63Ni), a glass column of 2 m long with a diam�
eter of 3 mm, and Porapak Q adsorbent). The tempera�
ture of the columns and detector was 50 and 310°C,
respectively. The rate of the carrier gas (nitrogen of spe�
cial purity) flux was 50 mL/min, the volume of the gas
introduced was 0.5 mL. The amount of N2O produced
was calculated by the equation: 

N2O–N = CVves/Тm,

where N2O–N is the rate of N2O production, ng N/g
of soil per h; C is the N2O concentration in the gas
sample, vol %; Vves is the volume of the air in the ves�
sel with soil, mL; T is the duration of incubation of the
vessel with soil, h; and m is the weight of dry soil, g.

The net N2O production of soil was estimated at
different concentrations (partial pressure) of acety�
lene. In the gas of the test vessels, the partial pressure
of C2H2 was 0.08, 0.12, 0.6, 1.8, 3.6 and 9.0 Pa. In the
vessel filled with C2H2 by 100%, the pressure was
101.3 kPa [77]. Therefore, the C2H2 pressure from 0.1
to 10 Pa corresponds to its concentration in the test
vessels ranging from 0.0001 to 0.01% of their volume.
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Consequently, in order to create the pressure of C2H2
within the given interval, one should apply 0.00002 to
0.002 mL of the initial (100%) gas. To obtain the con�
centration of 10 Pa in the vessel (15 mL), 0.0015 mL
C2H2 should be applied there (10 Pa = 10–4 atm,
15 mL × 10–4). It is worthy of note that to take this vol�
ume of gas from a gasometer filled with 100% acetylene
is very difficult. Therefore, the initial C2H2 (100%) acet�
ylene is sequentially diluted.

Substrate�induced respiration (SIR) of the soil was
determined in preliminarily incubated samples. This
respiration was assessed as the rate of initial maximum
respiration of microorganisms (CO2 emission) after
the incubation (22°C, 3–5 h) of the soil (1 or 2 g from
the upper and lower soil horizons, respectively)
enriched with glucose (solution, 10 mg/g or 0.1 mL/g)
[13, 14].

Soil microbial biomass carbon (Cmic) was calculated
according to the following formula: Cmic (µg C/g soil) =
SIR (µL CO2/g soil per h) × 40.04 + 0.37 [14]. For some
soil samples, the Cmic : Corg ratio was calculated. 

For inhibiting the N2O production in the soil,
cycloheximide (C15H23NO4) was applied at the con�
centration from 20 to 50 mg/g, which also inhibited
SIR to a greater extent (found in preliminary tests) [2,
3, 69]. Cycloheximide (actidione) belongs to the
group of aminoglycoside antibiotics that inhibit the
synthesis of proteins in organisms having 80S ribo�
somes. Eukaryote cells, including also the fungi, have
80S and 70S ribosomes, while the prokaryote ones
have only 70S ribosomes. Cycloheximide has the neu�
tral properties (pH > 7, 20°C); it is weakly bound with
the soil; its solubility in the soil solution is 2 g/100 g
(2°C). The high activity of cycloheximide in the soil is
preserved for a long time.

Statistic processing of the results. The net N2O pro�
duction was measured in 3–5 replicates; for SIR, 4 rep�
licates were used. All the calculations were made on the
dry weight of soil (105°C, 8 h); the results were
expressed as the average ± standard deviation (Excel).
The experimental data were processed using the single�
factor analysis of variance (Statistica 10.0) according to
the Dunñan and Kruskal–Wallis. The data on the spa�
tial distribution were illustrated using a box�plot; the val�
ues of median, lower and upper quartiles (limits) are
given. The range (distance) between different parts of
the box (median, quartiles) permits to us judge the
degree of dispersion and asymmetry of the data.

RESULTS

Net production of N2O by soil in laboratory (mois�
ture, sample weight, incubation, preincubation, rep�
licates of measurement, additional substrate). An
initial objective of the tests was related to the selec�
tion of experimental conditions that provide the
highest gas production by the soil and its sustainable
detection. A sample of air�dried soil (1, 2, and 10 g)
was placed in a test vessel (15 mL), moistened with
water (0.6 mL/g) to activate the microbial activity,
hermetically sealed, and incubated (24 h, 22°C and
28°C). The highest net N2O production was found in
the variants with a wide ratio between the volume of
the soil (Vs) and the volume of the air (Va) in the ves�
sel equal to 1 : 14 and 1 : 6.5 (Fig. 1). The incubation
of the soil at 28°C did not increase the N2O produc�
tion as compared to that at 22°C. 

The rate of the net N2O production in the gray soil
(Vs : Va = 1 : 6.5, the weight is 2 g) grew with the
increasing time of incubation, reaching the highest
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Fig. 1. Net production of N2O by the moistened (0.6 mL H2O) dry gray forest soil (forest, 0–10 cm, incubation for 24 h, n = 3)
in the vessels with different volumes of soil and air.
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values after 24 h (Fig. 2). The longer incubation of the
soils (more than 24 h) did not promote any increase in
the N2O production (the data are not presented); after
7 days, it was even reduced (almost by two orders of
magnitude) compared to that in the 24�h variant.
Therefore, in further tests, the weight of the soils (pre�
dominantly from the upper mineral horizons or layers)
was 2 g, the Vs : Va ratio = 1 : 6.5, and the temperature
and the duration of incubation were 22°C and 24 h,
respectively.

The rate of the net N2O production strongly varied
(Table 1). After moistening the dry soil, it was nearly
200%; after the preincubation, its variation was lower,
about 100%. The preliminary incubation of the soils
significantly (by 3–5 times) lowered the net N2O pro�
duction as compared to that in the variant with the
repeated moistening of the dry soil sample.

The application of additional sources of nitrogen
and carbon increased the N2O production and allowed
us to avoid the problems related to the low emission of
this gas [9, 33]. Therefore, in the further tests, the soil
was enriched with an additional substrate. The input of
glucose (2 mg/g soil) to the soil increased (by several
orders of magnitude) the N2O production (Table  2). In
the upper (0–10 cm) mineral soil layer, the net produc�
tion of N2O was 1990–7167 N2O–N × 10–3 ng/g per h
for the deciduous and spruce forests. The lowest rate of
the N2O production (after the application of glucose)
was determined in the gray soil under the aspen forest.
The highest rate was registered in the soddy�podzolic
soil of the cropland, fallow, and under the young forest
(the difference was almost two orders of magnitude).

The data on the dynamics of N2O production in the
soddy�podzolic soil enriched with glucose under the
native forest and cropland (Kostroma oblast) are pre�
sented in Table 3. With increasing the time of incuba�
tion, the N2O production became higher and was max�
imal after 24�h incubation in the native soil (Fig. 2) and
in the soils enriched with glucose.

The enrichment of the soil with ammonium sulfate
(0.08 mg N/g) did not promote any increase of the net
N2O production as compared to the control (Table 4).
The combined application of carbon (glucose) and
nitrogen (ammonium sulfate) enhanced the rate of
N2O production (by 16–90%) compared to the variant
with the application of only glucose. The highest
increase in the rate was recorded in the soddy�pod�
zolic soil and chernozem (by 56 and 70–90%, respec�

tively); the lowest increase (by 16–17%) was recorded
in the gray soil.

Thus, the conditions of measuring the net N2O pro�
duction by different soils were optimized related to the
weight of sample; its preliminary incubation, tempera�
ture, and duration of incubation; enrichment with car�
bon and nitrogen; and replicates of measurements. The
most sustainable net N2O production was revealed
when glucose (2 g; the volume of vessel is 15 mL) or a
mixture of glucose and ammonium sulfate were added:
the incubation lasted not less than 24 h at 22°C, the pre�
incubation was carried out at 60% of water holding
capacity and 22°C during 7 days, and the replicates
were not less than 5.

Net N2O production and soil microbial biomass.
For the determination of the interrelationship
between the net N2O production and the microbio�
logical characteristics (Cmic and Cmic : Corg) of the
soils, experiments with soil samples reflecting the
vertical (soil profile), horizontal (transect), and spa�
tial (territory) gradients were performed. The N2O
production was significantly higher (183–4734 N2O–
N × 10–3 ng/g per h) in the upper horizons of the soils
under different forests than in the lower horizons
(0.28–69 N2O–N × 10–3 ng/g per h) (Table 5). The
Cmic content drastically and significantly (р ≤ 0.05)
decreased down the profile of the soils under different
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Fig. 2. Dynamics of N2O net production by the moistened
(0.6 mL H2O) dry gray forest soil (forest, 0–10 cm, weight
2 g, incubation at 22°C, n = 3).

Table 1. Net production of N2O by the soils (0–10 cm) under different forests (Kaluzhskie zaseki) after preliminary treat�
ments

Forest 
(Kaluga oblast) Soil

N2O–N × 10–3, ng/g per h (n = 5)

moistening of air�dry soil, 
0.6 mL H2O/g

preincubation for 7 days, 22°C, 
60% of water holding capacity 

Oak forest Soddy�podzolic 6.0 ± 11.0 2.0 ± 2.0
Spruce forest 2.8 ± 1.7 0.9 ± 0.8
Aspen forest Gray forest 10.0 ± 17.0 1.9 ± 1.8
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forests. A positive correlation (r = 0.74, р ≤ 0.05, n = 18)
was found between the rate of the N2O production by
different soil loci and the Cmic content there. Conse�
quently, the greater the microbial biomass in the soil is,
the higher the net production of N2O, testifying to the
interrelation between this process and the abundance
and activity of soil microorganisms.

In the young ecosystems (cropland, abandoned
lands, young forest) with the soddy�podzolic soils
(horizontal gradient), the net N2O production was
high and significant (p ≤ 0.05), while in the mature ones
(secondary and native forests), it was low (Table 6). In
the soils of mature ecosystems, the Cmic content was
significantly higher than that in the young ecosys�
tems. The correlation between the N2O and Cmic
contents in the soils of this succession series was close
but negative (r = –0.75, n = 6). The rate of net N2O
production was found to be low (r = –0.56, p ≤ 0.05,
n = 6) if the Cmic : Corg ratio was high (Table 6). Con�
sequently, the higher the share of the microbial bio�
mass in the total organic matter content (that is char�
acteristic of natural weakly disturbed ecosystems)
was, the lower the rate of net N2O production.

The direct interrelationship between the microbial
biomass and the rate of the net N2O production was
found in the soils of natural ecosystems. An anthropo�
genically changed soil (cropland, fallow, young forest)
can produce more N2O than its natural analogue. In
addition, the interrelation between the microbial com�

ponent (Cmic) and the N2O production by the soils of
the disturbed ecosystems was close, but negative. This
fact shows that the N2O flux increases under the anthro�
pogenic transformation of terrestrial ecosystems.

Spatial distribution of the rate of N2O production
was estimated in the soil (soddy�podzolic, gray, allu�
vial–meadow) samples from different ecosystems
(forests, abandoned lands, croplands, n = 9, 7, and 6,
respectively) of Podol’sk and Serpukhov districts
(Moscow oblast). The N2O production by the plowed
soils was 15–105; the fallow and forest soils produced
126–387 and 1–107 ng N2O–N × 10–3/g per h. On
average, the soils of the forest, cropland, and fallow
produced 38, 69, and 239 ng N2O–N × 10–3/g per h.
Thus, in the soils of the natural ecosystems (forest),
the N2O production was much less than in the crop�
land and fallow (by 1.8 and 6.3 times, respectively)
(Fig. 3). The Cmic content and the Cmic : Corg ratio in
the plowed, fallow, and forest soils, on average, were
181, 569, and 1020 µg and 1.4, 2.6, and 3.0%, respec�
tively, indicating a significant decrease of these char�
acteristics in the anthropogenically disturbed ecosys�
tems compared to those in the natural ones.

Net N2O production by soil in applying cyclohexim�
ide (antibiotic, fungicide). The net N2O production in
the soddy�podzolic, gray, and chernozemic soils was
inhibited by cycloheximide, the concentration of
which corresponded to the highest inhibition of SIR
(determined in preliminary experiments). The inhibi�
tion of the production by the fungicide was significant
and amounted to 69–99% of that in the corresponding
control variant (Table 7). Taking into account that
cycloheximide can inhibit synthesis of protein only by
the eukaryote microorganisms (soil fungi belong to
them), one can suggest that the latter actively partici�
pate in the net N2O production in soils.

Separation of nitrification and denitrification contri�
butions to net N2O production. The tests showed that the
C2H2 concentration equaling only 1.8 Pa (0.0020% of
the volume) caused a decrease in the N2O production

Table 2. Net production of N2O by the soils (preincubation during 7 days at 22°C, 60% of water holding capacity) of dif�
ferent forests and croplands, without and with application of glucose (incubation for 24 h)

Ecosystem 
(age, year)* Oblast (locality) Soil (layer, cm)

N2O–N, ×10–3 ng/g per h (n = 5)

without glucose glucose, 2 mg/g

Oak forest Kaluga (Reserve Kaluzhs�
kie zaseki)

Soddy�podzolic (0–10) 2.0 ± 2.0 2546 ± 2019
Sa 0.9 ± 0.8 4734 ± 842
Aspen forest Gray forest (0–10) 1.9 ± 1.8 240 ± 94
Sgm Moscow 

(Zvenigorod);
Podzol (1.5–5) 199 ± 77 4065 ± 1569

Sbl Rzhavozem (2–6) 149 ± 32 1990 ± 697
Cropland Kostroma

 (Parfen;evo, Kologriv)
Soddy�podzolic (0–10) 0.6 ± 0.5 22002 ± 7111

Fallow (7) 1.6 ± 0.8 16475 ± 8987
Forest (20) 2.2 ± 1.7 38347 ± 2922
Forest (45) 1.1 ± 1.1 17074 ± 9041
Forest (90) Not det. 7167 ± 1973
Forest (450) 2.2 ± 1.0 3442 ± 2161
Sa⎯archangel spruce forest, Sgm⎯green moss spruce forest; Sbl⎯ spruce–broad�leaved forest.

Table 3. Dynamics of net N2O production by the soddy�pod�
zolic soil (2 mg glucose/g, n = 5) under the native forest and
cropland (Kostroma oblast), N2O–N ×10–3 ng/g per h

Duration 
of incubation, h Forest (6–14 cm) Cropland (0–24 cm)

3 11.9 ± 14.4 8.9 ± 8.9
6 21.5 ± 17.4 4.4 ± 5.3

12 1761 ± 2502 136 ± 204
24 3442 ± 2161 22002 ± 7111
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Table 4. Net production of N2O (N2O–N × 10–3 ng/g per h) by different soils when applying glucose and ammonium sulfate
(NH4)2SO4)

Soil Oblast (locality) Ecosystem 
(layer, cm) Control Glucose, 

2 mg/g
(NH4)2SO4,
0.08 mg N/g

Glucose + 
(NH4)2SO4

Soddy�podzolic Vladimir 
(Safonovo)

Forest (0–5) 8.3 ± 10.5 123 ± 45 4.8 ± 5.5 280 ± 18

Leached cher�
nozem

Voronezh 
(Voronezh)

Forest belt (0–10) 0.5 ± 0.5 13 ± 6 0.4 ± 0.4 142 ± 48
Meadow (0–10) 0.7 ± 0.07 9 ± 5 8.5 ± 0.2 93 ± 5
Cropland (0–10) 0.1 ± 0.03 17 ± 5 0.3 ± 0.2 57 ± 15

Gray forest Moscow 
(Pushchino)

Forest (0–10) 1.0 ± 0.5 82 ± 38 0.7 ± 0.3 99 ± 29
Cropland (0–10) 1.2 ± 0.7 97 ± 32 2.0 ± 0.8 114 ± 18

Burozem Krasnodar 
(Severnaya 
Ozereika)

Forest (4–14) 1.1 ± 0.4 86 ± 16 2.6 ± 0.8 106 ± 27
Carbolithozem Forest 1 (0–9) 5.6 ± 0.3 53 ± 21 0.8 ± 0.6 69 ± 56

Forest 2 (0–9) 1.2 ± 0.6 34 ± 22 0.6 ± 0.4 65 ± 63
Forest3 (0–9) 0.8 ± 0.6 75 ± 27 0.3 ± 0.06 79 ± 43

by the soils studied (Fig. 4). Since this decrease was
associated with the inhibition of nitrification in the
soils [43], there is a reason to calculate a contribution
of nitrification and denitrification separately to the
total net N2O production. Thus, in the soddy�podzolic
and gray soils of natural ecosystems, the contribution of
nitrification was 13–23%, while in the plowed ones it
was 6–16% (Table 8); in the chernozem, the contribu�
tion of nitrification was not revealed. Therefore, deni�
trification in the soils studied was more significant, and
its contribution was 77–100%.

Hereafter, cycloheximide (an inhibitor of SIR for
fungi) was applied to the soddy�podzolic (under the
forest) and gray (the cropland) soils, and the soils were

incubated with acetylene (1.8 Pa) (Table 9). The appli�
cation of cycloheximide and the following incubation
in the presence of C2H2 decreased the N2O production
by 93–96% of the control. Thus, nitrification in the
soddy�podzolic and gray forest soils was performed
due to the bacterial activity by 54% (7 × 100/13) and
25% (4 × 100/16), respectively. 

The application of cycloheximide to the soils sig�
nificantly (by 69–99%) inhibited the net N2O produc�
tion, testifying to the strong contribution of the
eukaryote component of the microbial biomass to this
process. An approach for the separation of nitrifica�
tion and denitrification in the N2O production in the
soils using acetylene in low concentration is proposed.

Table 5. Net production of nitrous oxide (N2O, 2 mg glucose/g of soil) and soil microbial biomass carbon (Cmic) in different
horizons of forest soils (figures with different letters differ significantly, p ≤ 0.05, Duncan criterion, for each parameter and
forest separately)

Forest* (soil) Oblast (locality) Horizon 
(depth, cm)

N2O–N × 10–3,
 ng/g per h Cmic, μg C/g

Mixed (soddy�podzolic) Vladimir (Safonovo) O (0–5) 123 ± 45 c 462 ± 92 c
AY (5–10) 183 ± 68 c 365 ± 34 c
ELBM (10–30) 25 ± 17 b 195 ± 9 b
AM (30–58) 0.4 ± 0.3 a 22 ± 4 a

Oak forest
 (soddy�podzolic)

Kaluga (Reserve 
Kaluzhskie zaseki)

AU (0–10) 2546 ± 2019 c 1816 ± 107 c
EL (10–20) 14 ± 4 b 184 ± 58 ab
BT1 (40–50) 0.3 ± 0.4 a 238 ± 57 b
BT2 (80–90) 0.3 ± 0.2 a 110 ± 22 a

Sa (soddy�podzolic) AY (0–10) 4734 ± 842 b 755 ± 50 b
EL (20–30) 21 ± 4 a 110 ± 54 a

Aspen forest (gray forest) AY (0–10) 240 ± 94 b 1351 ± 14 c
EL (40–50) 1.3 ± 1.2 a 161 ± 18 a
BT (70–80) 0.5 ± 0.3 a 299 ± 52 b

Sgm (podzol) Moscow (Zvenigorod) O (1.5–5) 4065 ± 1569 c 2545 ± 71 c
EL (5–16) 218 ± 32 b 195 ± 13 b
BF (16–38) 1.1 ± 0.2 a 27 ± 5 a

Sbl rzhavozem) AY (2–6) 1990 ± 697 b 1568 ± 156 b
BFM1 (11–39) 69 ± 14 a 75 ± 24 a

* Sa⎯archangel spruce forest; Sbl⎯spruce–broad�leaved forest. 
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DISCUSSION

Soil moisture and additional substrate. The experi�
ments showed that after moistening of the air�dry soils,
the net N2O production increased, and their prelimi�
nary incubation (60% of water holding capacity, 22°C,
7 days) sharply (by 3–5 times) lowered the intensity of
this process. Some authors also noted that moistening

of air�dry soils increased the rate of N2O production
[29, 50, 70]. In our tests, the variation of N2O produc�
tion in the repeatedly moistened and preliminarily
incubated soils reached nearly 200 and ≤100%, respec�
tively. The high variability (60–225%) of this process,
including its spatial variation, was also noted in [12, 40,
74]. Therefore, the preliminary treatment (preincuba�
tion) of soil is recommended before the performance of
microbiological analyses for some microbial compo�
nents [24, 57] and production of carbon dioxide [13,
27]. This procedure permits mitigation of the high vari�
ability of the parameters measured due to different
moisture and disturbance of soils (sampling, mixing of
samples, sieving, drying, and storage).

To avoid problems related to low emissions of N2O
from the soils, mineral ammonium and nitrate nitrogen
are added [9, 10]. Different forms of nitrogen fertilizers
(NH4NO3, NH4)2SO4, CO(NH2)2, KNO3) promote
increasing N2O emission by 3–5 times compared to the
control variant with the cultivated soil [33]. The
increase of N2O emission from soils is associated with
higher content of organic carbon and total nitrogen [44,
48, 60]. In our experiments, the enrichment of the soil
with glucose (carbon source) drastically increased the
net N2O production. The application of nitrogen with
ammonium sulfate and glucose increased or did not
affect this process. Some authors stated that the appli�
cation of glucose (1 mg/g) intensified (by 20 times) the
N2O production as compared to the emission from the
non�enriched soil [51].

Contribution of nitrification and denitrification to
N2O production by the soils is still a subject of wide dis�
cussion [5]. According to the data of different authors,
the contribution of nitrification to the N2O flux from
steppe soils is 61–98 [56] and 60–80% [58], while
from the forest soils it is 3–50 [61] and about 50% [28].
The contribution of heterotrophic microorganisms to
nitrification of the soddy�podzolic soil under the wood
sorrel spruce forest was found to be 94%, in the gray
forest soil under the birch forest it was 44%, and in the
plowed soils it was 1–16% [6].

The processes of nitrification and denitrification
responsible for the N2O flux are separated using selec�
tive inhibitors; for the determination of nitrification,
these are acetylene, nitrapyrin, dicyandiamide, etc. The
low concentration of acetylene (C2H2) in the test vessel
(0.1–10 Pa) inhibits the ammonium monooxidase
activity (by covalent fixation) and nitrification [21, 35,
53, 75]. Therefore, after the treatment with C2H2, the
total N2O flux will be only due to denitrification. Some
authors consider that the C2H2 concentration should be
not more than 1 Pa [35]; others suggest that it is 0.1–
10.0 [17, 21, 53, 75] or 2.5–5.0 Pa [43]. For field exper�
iments, the concentration of 5–10 Pa C2H2 were used
[55]. In this connection, it is important to determine
the C2H2 concentration for each soil. The C2H2 con�
centration to inhibit nitrification was shown to depend
on the content of nitrates in the soil [31]. The high con�
centration of acetylene (5–10 kPa) efficiently inhibits
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Table 6. Net production of nitrous oxide (N2O, 2 mg glucose/g of soil) by the soddy�podzolic soils (0–10 cm) of different
ecosystems, soil microbial biomass carbon (Cmic) and its portion of the total soil organic carbon (Corg) (figures with different
letters differ significantly, p ≤ 0.05, Duncan criterion, for each parameter and forest separately) 

Ecosystem (age, year) N2O–N × 10–3, ng/g per h Cmic, μg C/g Cmic/Corg

Cropland 22002 ± 7111 b 149 ± 12 ab 2.2 ± 0.2 abc
Fallow (7) 16475 ± 8987 b 187 ± 22 bc 2.1 ± 0.3 abc
Young forest (20) 38347 ± 2922 c 245 ± 23 c 2.0 ± 0.2 abc
Young forest (45) 17074 ± 9041 b 502 ± 25 e 2.1 ± 0.1 abc
Secondary forest (90) 7167 ± 1973 a 759 ± 135 f 5.7 ± 1.0 d
Native forest (450) 3442 ± 2161 a 755 ± 34 f 3.0 ± 0.1 bc
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Table 7. Net production of nitrous oxide (N2O–N × 10–3, ng/g per h) by different soils (preincubation; incubation: 2 g of soil,
24 h, 22°C, n = 5; glucose 2 mg/g)

Soil (locality) Ecosystem 
(layer, cm) N2O (glucose, I) CH*, mg/g N2O 

(CH + glucose, II)
Inhibition, % 

of I

Soddy�podzolic 
(Safonovo)

Forest (0–5) 123 ± 45 40 2.8 ± 3.2 98

(Efremovo) Forest (5–15) 7 ± 4 30 0.7 ± 0.2 91
Gray forest (Push�
chino)

Forest (0–10) 82 ± 38 20 8.6 ± 6.1 90
Cropland (0–10) 97 ± 32 20 27.3 ± 55.4 72

Leached chernozem 
(Voronezh)

Forest belt (0–10) 13 ± 6 50 0.4 ± 0.2 97
Meadow (0–10) 9 ± 5 50 3.8 ± 1.8 69
Cropland (0–10) 17 ± 5 50 2.6 ± 0.2 85
Cropland (0–10)/ mc** 11 ± 7 50 2.3 ± 1.9 79
Cropland (0–10)/rot 120 312 ± 66 50 1.6 ± 1.0 99

 * CH⎯cycloheximide, corresponded to the strongest inhibition of SIR (preliminary tests);
** mc⎯monoculture of corn (without application of mineral fertilizers); rot 120⎯rotation with annual application of nitrogen fertiliz�

ers at the rate of 120 kg/ha.

the reduction of N2O to N2 by denitrifying bacteria
that permits estimation of the denitrification [42, 82].
Consequently, acetylene in different concentrations
can inhibit both nitrification and denitrification.

However, acetylene may stimulate the mineralization
of soil organic matter (formation of excessive CO2),
indirectly intensifying denitrification [32]. In addi�
tion, soil microorganisms can absorb C2H2 [11, 76] and
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reduce its concentration (inhibition is incomplete).
This is especially important in short�term tests [43].

Contribution of fungi and bacteria to net N2O pro�
duction by soil Bacteria are shown to form about 20%
of the total N2O production by soils, while fungi
(fumigation with chloropicrin) are responsible for
70% [67]. To separate the contribution of bacteria
(prokaryotes) and microscopic fungi (eukaryotes) to
this process, antibiotics inhibiting the synthesis of pro�
teins of bacteria (streptomycin) and fungi (cyclohex�
imide) are often used [6, 18, 23]. Denitrification with
the formation of N2O is mainly performed by bacteria,
and, under certain conditions, by fungi as well [63].
The real denitrification by fungi was not found. Nitrite
reductase of eukaryotes, unlike that of prokaryotes,
has one active center. It is unrelated to cellular mem�
brane and not inhibited by acetylene [26]. Soil fungi of
the Fusarium genus were shown to reduce nitrites and
produced N2O at the low oxygen content [19]. There�
fore, the formation of N2O is considered an adaptation
of mycelial fungi to detoxication of nitrites that accu�
mulate under heterotrophic nitrification. Denitrifica�
tion performed by fungi predominates in the soils of
forests and pastures [46], as well as in the soils of semi�
arid territories [51]. Nitrification by fungi (application
of cycloheximide) was revealed significantly in forest
soils [62], particularly in the soils under coniferous
forests [41]. The application of cycloheximide to soils
lowered the N2O emission by 81% [80], 89% [46], and
63% [51], demonstrating a considerable contribution

of fungi to this process. Our experiments also revealed
the inhibition of N2O production by cycloheximide.
For the maximal inhibition of fungal respiration by
cycloheximide, its concentration should be detected
in preliminary tests [36, 45]. However, the substantia�
tion of the cycloheximide concentration applied to
soil is rather contradictory. Some researchers believe
that fungicide must not have a biocidal effect (for the
first 48 h) on the microbial biomass [23]; others, on
the contrary, believe that it must affect them [46, 80].
As shown in [46], the inhibition of SIR in the soil by
two antibiotics (cycloheximide and streptomycin) was
accompanied by the calculation of a coefficient of
overlapping the antibiotics action [49]; in [80] this fact
was not noted. In the soils studied, cycloheximide was
applied in the concentration (from 20 to 50 mg/g of
soil) providing the maximal inhibition of SIR, and the
value of overlapping the effects of antibiotics (fungi�
cide and bactericide) was 100 ± 5% [1–3].

CONCLUSIONS
In order to optimize the measurement of net N2O

production in laboratory, the preincubation of a soil
sample (22°C, 60%of total water capacity, 7 days) is
recommended. For the main incubation, (22°C, 24 h),
the sample was placed into a test vessel, where the pro�
portion between the volumes of soil and air was not less
than 1 : 6.5. To obtain sustainable N2O production, it
is expedient to introduce additional sources of carbon
and energy (glucose) and of mineral nitrogen (prefer�
ably, in ammonium form). Cycloheximide (an antibi�
otic inhibiting respiration of fungi) was used to esti�
mate the contribution of eukaryotes and prokaryotes
to the N2O production. This fungicide significantly
affected (69–99%) the N2O production by the soil,
testifying to a great participation of fungi in this pro�
cess. For the subdivision of the N2O production pro�
cess into denitrification and nitrification, acetylene as
an inhibitor of nitrification is proposed. The concen�
tration of this gas in the test vessel should be 1.8 Pa
(0.002% C2H2).

The experimental results indicate the predominant
contribution of denitrification to the total net produc�
tion of N2O by the soils.

The net N2O production by the soils in the pres�
ence of both inhibitors (C2H2 and cycloheximide)
amounted to 4–7% of the control, pointing to a signif�

Table 8. The contribution of nitrification and denitrification to
the net production of N2O by different soils (0–10 cm) (acet�
ylene, 1.8 Pa)

Soil (locality) Ecosystem

Portion, %

nitrification denitrifica�
tion

Soddy�pod�
zolic (Pod�
ol’sk)

Forest 13 87

Cropland 6 94

Gray forest 
(Pushchino)

Forest 23 77

Cropland 16 84

Chernozem 
(Voronezh)

Forest belt 0 100

Cropland 0 100

Table 9. Net production of nitrous oxide (N2O–N × 10–3, ng/g per h) by the soddy�podzolic and gray forest soils (0–10 cm;
2 mg of glucose + 0.08 mg (NH4)2SO4–N/g); the control sample, with the application of acetylene and cycloheximide

Variant  Soddy�podzolic 
(forest)

 Inhibition, % 
of the control Gray forest (cropland) Inhibition, % 

of the control

Control (without C2H2) 146 ± 27 0 77 ± 5 0

C2H2, 1.8 Pa 127 ± 12 13 65 ± 7 16

Cycloheximide, 20 mg/g 17 ± 12 88 5 ± 3 93

Cycloheximide + C2H2 11 ± 1 93 3 ± 4 96
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icant role of the fungal component of the microbial
biomass in this process. The relationship between the
net production of N2O and microbiological character�
istics of the soils (Cmic, Cmic: Corg) is shown along the
vertical, horizontal, and spatial gradients.
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