
ISSN 1064-2269, Journal of Communications Technology and Electronics, 2022, Vol. 67, No. 4, pp. 430–442. © Pleiades Publishing, Inc., 2022.

THEORY AND METHODS
OF SIGNAL PROCESSING
Weak Pulse Signal Detection Based on the Broad Learning Method 
under the Chaotic Background

L. Sua, * and J. Yanga

a School of Science, Chongqing University of Technology, Chongqing, 400054 Republic of China
*e-mail: cloudhopping@163.com

Received September 22, 2021; revised October 21, 2021; accepted December 7, 2021

Abstract—This paper combines the broad learning method with signal detection to realize weak pulse signal
detection under the chaotic background. First, based on the short-term predictability and sensitivity to small
perturbations of chaotic signals, the phase space reconstruction of the observed signals is carried out. Second,
the robust manifold width adaptive detection (RMWAD) model is constructed to obtain the one-step predic-
tion error, and then, we could realize adaptive detection of weak pulse signals by using one-step prediction
error and hypothesis test. Finally, we evaluate detection performance by Receiver Operating Characteristic
curve, precision rate, recall rate, accuracy rate and F1 score. Simulation experiments shows that the
RMWAD model could effectively detect weak pulse signals under the chaotic background, and the model has
better detection performance than the broad learning system (BLS), back propagation (BP) neural network
model, Extreme Gradient Boosting (XGB) model and support vector regression (SVR) model.
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INTRODUCTION
Weak signals are extremely weak and difficult to be

detected, and its detection technology has broad
application prospects in radar, communication trans-
mission, sea clutter processing and seismic detection
[1–4]. The traditional weak signal detection methods
mainly include stochastic resonance method [5, 6],
lock-in amplifier method [7, 8] and Duffing oscillator
method [9, 10], but these methods is basically invalid
for weak signal detection under chaotic background,
and has a high threshold for the signal-to-noise ratio
(SNR) of weak signal detection. With the develop-
ment of chaos theory, the method of combining chaos
theory with weak signal does not need to consider the
distribution characteristics of interference, and it also
does not need a lot of prior knowledge to effectively
achieve a lower SNR threshold [11–14]. In addition,
the pulse signal is a typical signal in communication,
seismic detection and fault diagnosis and other fields
[15, 16], so effectively improving the detection ability
of weak pulse signal under chaotic background is of
great significance to reduce the detection cost of
equipment and enhance the anti-interference ability
of detection system.

Therefore, scholars from home and abroad have
carried out extensive research on the detection of weak
pulse signal under chaotic background. Some nonlin-
ear methods such as least squares support vector

machine, Elman neural network and so on are used to
detect weak pulse signals under chaotic background
[17–22], these methods have certain robustness and
generalization ability, but the selection of the original
data and factors has a great impact on the prediction
results, and fail to use the chaotic nature, resulting in
the low reliability of the prediction [12, 23]. Is there
any other way? Broad learning system is a neural net-
work structure independent of depth structure. Com-
pared with “depth” structure, “width” structure is
very concise because there is no coupling between lay-
ers [24]. Based on the broad learning method, a struc-
tured manifold width learning system improved the
fitting effect of large-scale chaotic data [25]. Besides,
a robust manifold broad learning system further
improved the generalization ability and robustness of
the model, and demonstrated that the model is supe-
rior to other broad learning models for chaotic data
prediction [26]. In addition, the fusion model based
on principal component analysis and broad learning
algorithm is feasible in the fault diagnosis of rotor sys-
tem [27]. In practice, since the broad learning method
was proposed, it has been widely used in image classi-
fication, pattern recognition, EEG signal processing
and other fields, it’s a promising machine learning
algorithm [28–33].

According to the broad learning method could bet-
ter describe the properties of nonlinear characteristics,
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and in order to realize intelligence statistical detection,
this paper proposed the robust manifold width adap-
tive detection (RMWAD) model, which is applied to
obtain one-step prediction error, hypothesis testing is
used to realize weak pulse signal detection under cha-
otic noise background.

The remainder of the paper is organized as follows.
In Section 1, we provide the background for broad
learning system and hypothesis test of weak pulse sig-
nal. In Section 2, we present the detection model. In
Section 3, we illustrate the simulation experiments of
the detection model. We summarize the results of sim-
ulation experiments in Conclusion section.

1. DESCRIPTION OF CONCEPTS

1.1. Broad Learning System

Broad learning system (BLS) based on random
vector function connection network (RALFNN) is a
neural network, the mainly difference is that BLS
model extracts the features from original data and take
the features as the input layer compared with
RALFNN [24, 34]. Supposing there are  kinds of
mapping methods, and each method has  nodes, we
consider the mapped feature

(1)

where  is activation function,  is the
input data,  is the number of samples,  is the
dimension of samples, ,

,  is the weight of
mapping features,  is bias.

The following are similar with RALFNN. Suppos-
ing there are  enhancement nodes, then we could
receive enhanced information

(2)

where ,  are generated
randomly, and  is activation function.

We could receive the output of BLS model

(3)

where  are obtained by ridge regression algo-
rithm [35].

Based on the BLS model, many other great new
models are proposed, such as fuzzy broad learning
model, structured manifold broad learning model and
robust manifold broad learning model, these models
have achieved satisfactory performance on chaotic
time series, especially robust manifold broad learning
model has great robustness and generalization ability,
and is superior to other broad learning methods for
chaotic time series prediction [24–26, 36].
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1.2. Hypothesis Test of Weak Pulse Signal

The weak pulse signal could be transformed in the
chaotic background noise

(4)

where  represents the observation signal,  rep-
resents the chaotic signal, represents the weak
pulse signal,  represents Gaussian white noise.

The weak pulse signal is often submerged in the
chaotic noise, if the hypothesis test is directly inferred
by equation (4), it’s prone to high false positive [17].
But we could obtain the estimation of the chaotic
noise based on its chaotic nonlinear characteristics,
and then the hypothesis testing problem is further
transformed

(5)

when  is true, it shows that there is only white
Gaussian noise in the observed signal, and there is no
weak pulse signal; when the  is true, it shows that
there is a weak pulse signal in the observation signal.

In this paper, we consider construct a robust man-
ifold width dynamic adaptive detection (RMWAD)
model based on broad learning methods to detect the
weak pulse signal from prediction error. The specific
idea framework of this paper is shown in Fig. 1.

2. DETECTION MODEL

2.1. RMWAD Model

According to the Section 1, we need to obtain the
estimation of the chaotic noise, then the prediction
error could be computed, and the hypothesis test (5) is
used to detect the weak pulse signal, so the detection
model RMWAD is mainly divided into the following
three steps: first, reconstructing the one dimensional
observation signal into a high dimensional matrix;
then, establishing the RMWAD model to obtain the
one-step prediction error; finally, detecting weak
pulse signal from prediction error by the hypothesis
testing.

2.2. Reconstruction Observation Signal

Phase space is used to represent all possible states
of a system. The dimension of nonlinear system is usu-
ally relatively high, but the time series collected in
practice are generally one-dimensional and difficult to
reflect the high-dimensional space of nonlinear sys-
tem [37, 38]. So we need to extend the collected time
series to a higher dimensional phase space. For the
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Fig. 1. The specific idea framework of weak pulse signal detection.
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(6)

where   is
embedding dimension obtained by the method pro-
posed by Cao [39],  is the delay time obtained by the
auto-correlation method [40].

According to Takens’ theorem [37], If we could
find a smooth mapping  or an estimation 
of , then the data of the next time could be predicted,
that is .
Therefore, we could construct the RMWAD model
[24–26] as the approximate mapping  to receive one-
step prediction.
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2.3. RMWAD Model

For the reconstructed observation signal , sup-
posing that the feature layer of the RMWAD model has

 kinds of mapping methods, each method has  nodes,
and then we could receive the mapped feature (1).

Because the time series in chaotic dynamic system
usually evolve according to a certain manifold, it is
necessary to represent the reconstructed observation
signal by manifold [41], and we could express the
objective function of manifold feature mapping.

(7)

where  denotes the operation of finding the trace of
a matrix;  is the weight in the feature layer;  and 
are regularization parameters;  is randomly
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generated perturbation matrix;  is the number of rows
of ;  is the number of the mapping feature;

 is the normalized graph
Laplacian matrix;  stands for the phrase of “subject
to”;  is the unit matrix; T denotes the operation of
transpose;  is the diagonal matrix denoted as  =

, where

(8)

where  represents the k nearest neighbor sets of .

 is reconstructed observation signal,  and 
could be obtained by  and . But the objective func-
tion (7) is the non-convex and non-smooth function
with generalized orthogonal constraints and it’s diffi-
cult to be optimized. Therefore, we need the following
methods to optimize the objective function (7):

First, we use separating variables method [42] to
obtain the new objective function

(9)

where 

and

(10)

Second, we could receive the augmented Lagrange
function of the objective function (9)

(11)

Third, according to the augmented Lagrange function
(11), the iterative equations [26, 43, 44] are as follows

(12)

where ,
,  and  are generated ran-

domly, , ;  are zero

matrix. ;  is the row vector of
.

Finally, we use the alternating direction multiplier
method [45] to solve the variables in iterative equa-
tions (12) to receive the optimal weight  of the fea-
ture layer, and then the mapping feature  could be
obtained by bringing  into the mapped feature (1).

After extracting  from the feature layer, supposing
there are  enhancement nodes, and we could receive

the enhancement information  by bringing  into
the enhanced information (2).

The augmented input  of the feature layer and
the enhancement layer is obtained, and then the out-
put of RMWAD model is , and then we
could receive the relationship between the predicted
value and the true value

(13)

where  is obtained by ridge regression algorithm
[35],  is real value of prediction value.
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Fig. 2. The flow chart of the RMWAD model.
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Then, we could establish the approximate mapping
of reconstructed observation signal

(14)

and we could receive the one-step prediction error by
the relationship between the predicted value and the
true value (13).
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where ut represents the weak pulse signal. Then, we
could establish  statistics

(16)

if  is true, then , and , we
could receive , where  is confidence
coefficient, and

(17)

When , we could reject the original hypothesis
and consider that there is a weak pulse signal in the
observation signal, and the hypothesis threshold
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table. According to the dynamic threshold, we could
realize adaptive detection to make the signal detection
result more objective.

In summary, the f low chart of RMWAD model
detecting weak pulse signal is shown in Fig. 2.

3. SIMULATION EXPERIMENTS
In this section, we perform three simulation exper-

iments to verify the feasibility and effectiveness of the
RMWAD model. In the experiment, we would use the
chaotic background signals generated by the Lorenz
system and Rosser system, the signal-to-noise ratio
(SNR) is used to evaluate the detection threshold, the
mean absolute error (MAE) and root mean square
error (RMSE) are used to evaluate the prediction error
of the model, and the ROC curve and its area under
(AUC), accuracy rate (PR), recall rate (RE), accuracy
rate (ACC) and F1 score (F1) are used as the evalua-
tion index of detection results:

where

(18)

and

(19)

 is the variance of white noise,  is the variance of
chaotic signal,  is the the variance of weak pulse sig-
nal,  is wake pulse signal and  is the prediction
value of the RMWAD model to . TP refers to the
number of times when there is a pulse signal in the
observation signal and it is judged to have a pulse sig-
nal; TN refers to the number of times when there is no
pulse signal and it is judged to have no pulse signal; FP
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refers to the number of times when there is no pulse
signal but it is judged to have a pulse signal; FN refers
to the number of times when there is a pulse signal but
it is judged to have no pulse signal.

The iterative equation of the Lorenz system is as
follows:

(20)

The iterative equation of the Rosser system is as fol-
lows:

(21)

where  is the function of time. Supposing the ini-
tial condition , the sam-
pling time is , and we could generate
10000 data points by the fourth-order method, and
the first component is taken as the chaotic back-
ground. In addition, in order to ensure the complete
chaotic state of the system, we could abandon the pre-
vious 3000 points and select 4000 continuous
sequences as the chaotic background denoted by .

The white noise uses the wgn function in Matlab to
generate a one-dimensional sequence of 4000 samples
that obey the normal distribution denoted by , and
then, we could use the sum of  and  as the cha-
otic noise background, where the mean of the white
noise is equal to zero, and the values of  are shown
in Tables 2 to 5 respectively.

The parameters used in the simulation experiments
are shown in Table 1.

3.1. Experiment 1: Detecting the Existence 
of Weak Pulse Signal

Suppose that the pulse signal is a single pulse sig-
nal, that is

we generate a time series with length of 4000, denoted
by , and detect weak pulse sig-
nals by using the RMWAD model.

For the Lorenz system, , ,
, , , and

then the detection results of are shown in Fig. 3. For the
Rosser system, , , ,

, , and then
the detection results are shown in Fig. 4.
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Fig. 3. Detection results of the RMWAD model: (a) Lorenz noise signal; (b) observation signal; (c) the one-step prediction error
of observed signal with Lorenz; (d)  value.
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Figures 3a, 3b respectively show the chaotic noise
signal and observation signal of Lorenz system:
according to Fig. 3b, the influence of weak pulse signal
on chaotic noise background signal is very small,
therefore, the embedding dimension and delay time of
the chaotic noise background signal obtained by the
same method are the same. Figures 3c, 3d are the one-
step prediction error and dynamic threshold  value
obtained by RMWAD model respectively: according

P
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Table 1. Experimental parameters

 is delay times,  is embedding dimension,  is number of feature 

Lorenz system Rosser

Parameters

value

10, 8 3,α = β = 0.2,a =

28γ = c =

τ m q
to Fig. 3c, it shows that the error of 10 positions is
obviously larger, and there may be a weak pulse signal.
Combined with Fig. 3d, the  value of these 10 posi-
tions is less than 0.5, it shows that there are weak pulse
signals in the observation signal under the Lorenz cha-
otic noise background based on subsection 1.2 hypothe-
sis test.

The chaotic noise signal and observation signal of the
Rosser system respectively are shown in Figs. 4a, 4b. The

P
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nodes,  is the number of enhancement nodes.
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Fig. 4. Detection results of the RMWAD model under the Rosser noise background: (a) chaotic noise signal; (b) received signal;
(c) the one-step prediction error; (d)  value.
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one-step prediction error and dynamic threshold 
value of RMWAD model respectively is shown in
Figs. 4c, 4d: the 10 positions are relatively large and
there may be weak pulse signal (see Fig. 4c), but it is
not show that the weak pulse signal exist objectively.
Therefore, the dynamic threshold obtained by the
RMWAD model is further used to judge, the  value
of hypothesis test is less than 0.5 (see Fig. 4d), and
according to subsection 1.2 hypothesis test, it objec-
tively shows that the observation signal under the
Rosser chaotic noise background also exits weak pulse
signal.

3.2. Experiment 2: Detection of Weak Pulse Signal 
under the Different SNR Condition

In the subsection, we would detect weak pulse sig-
nal under different SNR to receive the range of detec-

P

P
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tion of SNR by the RMWAD model. Suppose that the
pulse signal is a single pulse signal, that is

and we generate a time series with length of 4000,
denoted by . We assume that
the period of the weak pulse signal is constant, and the
intensity of weak pulse signal is controlled by changing
the value of , the detailed values of  and detection
results are shown in Tables 2 and 3.

Table 2 shows that the detailed values of  and detec-
tion results of the RMWAD model under the Lorenz
chaotic noise background. It shows that with the
decrease of the SNR, the value of MAE and RMSE
become smaller and smaller (see Fig. 5a). According to
Table 2, with the decrease of the SNR, the PR is always
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Fig. 5. The trend chart of error evaluation index under different SNR: (a) MAE and RMSE under the Lorenz noise background;
(b) MAE and RMSE under the Rosser noise background.
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equal to 1.0, and the ACC remains above 0.99. The RE
decreases, but the lowest F1 for the comprehensive eval-
uation of PR and RE is 0.8, it shows that the RMWAD
model could effectively detect the weak pulse signal in

.

Table 3 shows that the detailed values of  and
detection results of the RMWAD model under the
Rosser noise chaotic background. It also shows that
the value of MAE and RMSE of the model are getting
smaller and smaller with the decrease of the SNR (see
Fig. 5b). According to Table 3, the value of PR is
always 1.0, the value of ACC remains above 0.99, and
the value of F1 is also not less than 0.8, it shows that
the model could also detect weak pulse signal well in

( )∈ − −SNR 103.4120 dB, 18.4453 dB

1a

( )∈ − −SNR 126.9493 dB, 16.5239 dB .
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Table 2. Detection results for the Lorenz system

The value of  is in brackets.

SNR White noise Evaluation index
of prediction error

dB MAE RMSE

–18.4453(70) 0.2404 0.4500 3.1714

–25.1732(50) 0.1759 0.3474 2.2724

–43.4976(20) 0.0698 0.1999 0.9393

–65.9760(6.5) 0.0277 0.0840 0.3664

–71.2233(5) 0.0175 0.0646 0.2878

–81.4398(3) 0.0105 0.0361 0.1738

–103.4120(1) 0.0035 0.0142 0.0598

eσ

1a
3.3. Experiment 3: Comparison of Different Models 
for Weak Pulse Signal Detection

In the subsection, we compare the RMWAD
model with extreme gradient boosting (XGB) model,
back propagation (BP) neural network model, broad
learning system (BLS) model and support vector regres-
sion (SVR) model. It is assumed that the pulse signal is
the same single pulse signal as the experiment 2, we use
above different models to detect the weak pulse signal
under the chaotic noise background of the Lorenz sys-
tem and Rosser system respectively, use MAE, RMSE
to evaluate the prediction error of the model, and use
ROC curve, PR, RE, ACC, F1 to evaluate the detec-
tion performance.
OLOGY AND ELECTRONICS  Vol. 67  No. 4  2022

Detection performance evaluation index

PR RE ACC F1

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 0.7272 0.9992 0.8421

1.0 0.6667 0.9989 0.8000

1.0 0.6667 0.9989 0.8000

1.0 0.6667 0.9989 0.8000
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Table 3. Detection results for the Rosser system

The value of  is in brackets.

SNR White noise Evaluation index
of prediction error Detection performance evaluation index

dB MAE RMSE PR RE ACC F1

–16.5239(50) 0.0994 0.2280 2.0234 1.0 1.0 1.0 1.0
–34.8465(20) 0.0403 0.2227 1.0283 1.0 1.0 1.0 1.0
–57.3246(6.5) 0.0128 0.0675 0.3595 1.0 1.0 1.0 1.0
–72.7883(3) 0.0060 0.0328 0.1660 1.0 1.0 1.0 1.0
–94.7616(1) 0.0020 0.0114 0.0581 1.0 1.0 1.0 1.0

–118.8400(0.3) 0.0035 0.0178 1.0 0.8 0.9995 0.8889

–126.9493(0.2) 0.0021 0.0118 1.0 0.7272 0.9992 0.8421

eσ

46.1183 10−×
43.9968 10−×

1a

Table 4. Comparison of different models under different SNR for the Lorenz system

The value of the RMWAD model in the same SNR in brackets.

RMWAD XGB BP BLS SVR

SNR dB –103.4120 –81.4398 –71.2233 –65.9760 –43.4976

White noise 0.0035 0.0105 0.0175 0.0277 0.0698

Evaluation
index of prediction 
error

MAE 0.0142 0.0331
(0.0361)

0.0891
(0.0646)

0.1184
(0.0840)

1.9688
(0.1999)

RMSE 0.0598 0.0472
(0.1738)

0.3454
(0.2878)

0.4267
(0.3664)

2.5146
(0.9393)

Detection performance 
evaluation index

ACC 0.9989 0.9982
(0.9989)

0.9984
(0.9989)

0.9985
(0.9992)

0.9990
(1.0)

PR 1.0 0.25
(1.0)

1.0
(1.0)

1.0
(1.0)

0.5
(1.0)

RE 0.6667 0.6667
(0.6667)

0.5714
(1.0)

0.5714
(1.0)

1.0
(1.0)

F1 0.8000 0.3636
(0.8000)

0.7272
(0.8000)

0.7272
(0.8421)

0.6667
(1.0)

eσ
The detection results of models under the Lorenz
system and Rosser system chaotic background are
shown in Tables 4 and 5 respectively.

In the Table 4, , the PR and
ACC values of the RMWAD model are above 0.99,
and the value of F1 of the comprehensive evaluation of
PR and RE is 0.8, AUC (see Fig. 6a) value is over than
other models. In addition, the  of other models
are higher than that of the RMWAD model, but their
detection performance is not as good as the RMWAD
model.

In the Table 5, , the predic-
tion error of the RMWAD model is relatively small
than other models, and the ACC and PR values are

SNR 103.4120 dB= −

SNR

SNR 126.9493 dB= −
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
also above 0.99. The evaluation detection index values
of other models are not as good as the RMWAD
model. In addition, the AUC values of other models
are smaller than the RMWAD model (see Fig. 6b),
Therefore, it shows that the RMWAD model has bet-
ter detection performance than other models under
the Rosser chaotic noise background.

CONCLUSIONS

We have established a new RMWAD model to
detect weak pulse signal under the chaotic noise back-
ground. Considering the short-term predictability and
sensitivity to small disturbance of chaotic time series,
 ELECTRONICS  Vol. 67  No. 4  2022
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Table 5. Comparison of different models under different SNR for the Rosser system

The value of the RMWAD model in the same SNR in brackets.

RMWAD XGB BP BLS SVR

SNR dB –126.9493 –118.8400 –94.7616 –86.6513 –57.3246

White noise 0.0020 0.0029 0.0128

Evaluation
index of prediction 
error

MAE 0.0021 0.0162
(0.0035)

0.0160
(0.0114)

0.0178
(0.0173)

5.7582
(0.0675)

RMSE 0.0118 0.0225
(0.0178)

0.0597
(0.0581)

0.0881
(0.0850)

7.1170
(0.3595)

Detection performance 
evaluation index

ACC 0.9992 0.9982
(0.9995)

0.9985
(1.0)

0.9984
(1.0)

0.9980
(1.0)

PR 1.0 0.25
(1.0)

1.0
(1.0)

1.0
(1.0)

0.0
(1.0)

RE 0.7272 0.6667
(0.8)

0.5714
(1.0)

0.5714
(1.0)

NAN
(1.0)

F1 0.8421 0.3636
(0.8889)

0.7272
(1.0)

0.7272
(1.0)

NAN
(1.0)

eσ 43.9968 10−× 46.1183 10−×
we construct the RMWAD model combined with
phase space reconstruction. We detect weak pulse sig-
nal under Lorenz and Rosser chaotic noise back-
ground respectively by using the RMWAD model. The
Results of the simulation experiments are as follows:

(1) According to experiment 1, there is a wake pulse
signal in the observation signal, and the RMWAD
model could detect weak pulse signal from the Lorenz
and Rosser chaotic noise background respectively.

(2) According to experiment 2, for Lorenz chaotic
noise background, it shows that the RMWAD model
JOURNAL OF COMMUNICATIONS TECHN

Fig. 6. ROC curves of different models in the same SNR: 
(b)  in the Rosser noise background.
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could effectively detect weak pulse signal in
, and the value

of AUC, PR, ACC and F1 are relatively high; for the
Rosser noise chaotic background, the RMWAD
model could also detect weak pulse signal in

, and the values
of AUC, PR, ACC and F1 are relatively high.

(3) According to experiment 3, the RMWAD
model has better detection performance for weak pulse
signals under chaotic noise background than BLS, BP,
XGBOOST and SVR models under the same SNR or

( )∈ − −SNR 103.4120 dB, 18.4453 dB

( )∈ − −SNR 126.9493 dB, 16.5239 dB
OLOGY AND ELECTRONICS  Vol. 67  No. 4  2022

(a)  in the Lorenz noise background;

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0
Specificity

(b)

Se
ns

iti
vi

ty

Boundary
RMWAD AUC = 0.9993
BLS AUC = 0.9989
BP AUC = 0.9990
XGB AUC = 0.5583
SVR AUC = 0.5248

SNR 103.4120 dB= −



WEAK PULSE SIGNAL DETECTION BASED ON THE BROAD LEARNING METHOD 441
different SNR, and the prediction error of this model
is relatively small.

In summary, the RMWAD model proposed by this
paper is effective and simple for weak pulse signal
detection under the chaotic noise background without
additional prior knowledge. In the future, we will con-
tinue to improve the prediction error and detection
performance of the RMWAD model to achieve lower
SNR operating threshold and extend it to the detec-
tion of other signals.
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