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Abstract—Layered isotropic structures including layers of metamaterial are considered. Two-layer and mul-
tilayer symmetric structures, as well as a structure with a continuous change in material parameters, have
been investigated. For the first time, the conditions of transparency of such structures and structures derived
from them are presented. It is shown that the boundaries of the regions of no passage of the wave correspond
to the conditions of transparency of such structures. It is shown that for transparency parity-time (PT) sym-
metric structures in electrodynamics and optics, additional conditions are required, in contrast to the struc-

tures presented.
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INTRODUCTION

The study of inhomogeneous layered media in
electrodynamics and optics has been carried out for
more than a hundred years. The literature describes
infinite and bounded structures [1—11], studies the
behavior of various types of waves, considers guiding
[11] and resonance [4, 5] structures, and isotropic
[1—5] and anisotropic media [6—8, 10].

A large number of microwave [4, 5] and optical
devices [1, 7] have been developed on the basis of
inhomogeneous media. Recently, various structures
and devices using metamaterials have been of great
interest to researchers [7, 12—14]. In particular, it was
proposed to use metamaterials for the production of
flat lenses, invisible coatings, elements of photonic
switching systems and emitting devices.

Since 2007, studies have been presented describing
the so-called parity-time (PT) symmetric structures
[15—19]. In the simplest case, these are two-layer
structures of the same thickness with complex conju-
gate dielectric and magnetic permeabilities. The
authors proposed, in particular, to use them as trans-
parent structures, as well as to compensate for losses in
dielectric layers [18, 19]. To describe them, as a rule,
operator methods were used, which were developed in
detail in quantum physics [18, 19]. Papers [20—22]
also describe a special case PT structure, a medium
when the real parts of permittivity and permeability
tend to zero. As shown by the author, such structures
are indeed transparent, in contrast to general case PT
symmetrical optical and electromagnetic structures.

However, it should be noted that as early as 2006,
the so-called spatially symmetric structures without

forbidden regions were described [23, 24]. These
structures included layers of an ordinary dielectric and
metamaterial of equal thickness with the same modu-
lus and opposite in sign dielectric and magnetic per-
meability. Obviously, such media can be transparent.

The main goal of this study is to find conditions for
the transparency of arbitrary layered media and
media with continuously varying parameters in terms
of the material parameters of the medium. For
research, we used the transformation operator
method [1, 3—8, 23, 24], which was widely used ear-
lier to describe both isotropic and anisotropic struc-
tures and which is adequate for these cases in the
framework of a linear problem.

1. TRANSPARENCY CONDITIONS
OF A MULTILAYER STRUCTURE

Let us consider the conditions for the transparency
of an arbitrary layered, primarily two layer, structure.
The dielectric and magnetic permeabilities of the lay-
ers in this case are complex. Let a plane electromag-
netic wave with frequency o falls on such a structure at
an arbitrary angle (Fig. 1).

The behavior of a wave in such a structure can be
described using a transformation operator that con-
nects the tangential components of the field at its
boundaries [1—8]:

U =10, (1)
where U, is the operator of the state of the tangential

components of the field at boundary z = z, and U is
the operator of the state of the tangential components
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Fig. 1. The geometry of the two-layer structure.

of the field at boundary z = z,. Then, for a TE-wave
we have [1]

u= {5 g, =B ()
= s 0 = ,
H y H y0
by analogy for TM-waves [1]:
E E
U= U=| " 3)
X x0

The transformation operator of a two-layer structure,
in accordance with the method [1—11], is found as the
product of the layer transformation operators:

L=LL, (4)

where the matrix of the operator of the first layer has
form [1-5]

J .
L, = D . ®))
—jpsin@;  cos@,

Here, ¢, = kynd, cos 0, is the optical thickness of the
first layer, k, = \g,L, is the wave number in free

space, n, = /g, is the refractive index of the mate-
rial of the first layer, 0, is the angle of refraction in the

first layer, p, = /&,/|, is the wave conductivity of the
layer (for a wave of TE-type), p, =W, / g, is the wave
impedance of the layer (for a wave of TM-type), d| is

the layer thickness, and j = v—1. The second layer
operator matrix is written as

jo.
cosp, —-—sin@
L, = o (6)
—jpysin@,  cosQ,

Here, similarly to the first layer, ¢, = kyn,d, cos0, is
the optical thickness of the second layer, n, = \/&,11, is
the refractive index of the material of the second
layer, 0, is the angle of refraction in the second layer,
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P> = +&/1, for the TE-type wave, p, = i, /e, for
the TM-type wave, and d, is the layer thickness.

Obviously, the structure under consideration will
be transparent if reflection coefficient R is zero, and
transmission coefficient 7'is equal to 1. In accordance
with [1], the reflection and transmission coefficients
of the structure are in form

(Li + Liop) o — (Lo + Lyypy)

(Liy + Lop) pr + (Lo + Lyypy)
2p

(Liy + Liypy) py+ (Lyy + Ly py)

where L, are the elements of transformation operator

matrix (4). Thus, the transparency condition is
defined by expression

(L + Liap) py = (Lyy + Lyypy) = 0. (®)
This coefficient depends on both the parameters of the
layered structure included in the elements of the trans-
formation matrix Z,,, and on environmental parame-
ters p;, p;.

If the structure is required to be transparent regard-
less of the parameters of its environment, then from (8)
it follows that condition

trL =2, )

(7

where trL is the matrix trace. Indeed, taking into
account the continuity of the tangential components
of the fields at the boundaries of the structure, the
necessary condition for transparency is the equality of
the components of these fields at the output of the
structure to the corresponding components of the
fields at its input:

ExO
Hyo

|t L
Ly Ly

In this case, solution (10) gives (9) and, accordingly,
condition (8) is satisfied (see the Appendix). In this
case, it is known from the theory of periodic media
that condition (9) determines the boundaries of the
regions of no passage of a wave in an infinite periodic
structure with the corresponding two-layer period
[1—4] described by operator (4).

Thus, a two-layer structure will be transparent if
condition (9) is satisfied for the corresponding peri-
odic structure the period of which is the considered
bounded structure.

ExO

Hy| (10)

In a more general case, the operators for trans-
forming a multilayer structure with an arbitrary num-
ber of layers are found:

nzgn,

(1)
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TRANSPARENT MULTILAYER ELECTROMAGNETIC STRUCTURES

where ﬂi is the operator’s ith layer and M is the num-
ber of layers. Then, to ensure transparency, equality (9) is
satisfied.

Now consider a periodic structure with N periods
including an arbitrary number of layers. Obviously,
such a structure will be transparent if the amplitudes of
the fields at its input and output are equal, and the
resulting phase shift by N periods will be 2mm
(m ==%1,£2,...). In this case, the phase shift in one
period is equal to @ = 2nm/ N . Then, taking into
account the transformation matrix for one period,
we write

Ly Ly
Ly Ly

where L, L;,, Ly, L,, are elements of the transforma-
tion matrix for a multilayer period. Whence, taking
into account (8), we obtain the condition for the trans-
parency of a periodic multilayer structure with N peri-
ods and an arbitrary number of layers in a period
in form

ExO
Hyo

ExO eXp (J(P)
HyO €Xp (J(p)

) (12)

trL = |2cos(p|. (13)

Thus, a multilayer structure with an arbitrary num-
ber of layers is transparent if its parameters correspond
to the boundaries of the wave propagation regions of
the corresponding periodic structure determined by
condition (9). A multilayer periodic structure with N
periods will be transparent if its parameters corre-
spond to the wave propagation regions and condition
(13) is satisfied.

Figure 2 shows an illustration of expression (13)
using an example of a structure that includes four peri-
ods. In this case, the phase shift of the electric (mag-
netic) field vector in one period is /2, at the end of the
fourth period, the phase shift of the electric field
strength of vector Ey is 2x, and the amplitude of vector

E, is equal to the amplitude of vector E| at the begin-
ning of the first period. Note that Fig. 2 shows a non-
spatial rotation of vector £, and the dependence of the
current phase of the wave on the spatial coordinate.
For definiteness, the direction of the electric field vec-
tor is taken as zero phase E, along the positive direc-
tion of the Oy-axis.

2. TWO-LAYER SYMMETRIC DIELECTRIC-
METAMATERIAL STRUCTURE

With the advent of metamaterials with simultane-
ously negative dielectric and magnetic permeabilities,
the production of completely transparent layered struc-
tures has become much easier. Indeed, condition (9)
can be satisfied when using a spatially symmetric iso-
tropic dielectric—isotropic metamaterial structure.
For this, it is necessary that for the layers of the two-

layer structure, conditions €., = —€4, Wpera = —Ma»
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Fig. 2. Illustration of the transparency condition for a four-
layer periodic structure.

dew = dy are satisfied (Fig. 3). In this case, the per-
mittivity and permeability in the general case are com-
plex quantities. Thus, in accordance with the method-

ology [1, 3], transformation operator matrix ﬂl of a
single dielectric layer has form (5), and transformation

operator matrix M, of a layer of an isotropic metama-
terial is written in form

Jj o
cos@, Lsin@

1= l D 1 . (14)
JpSin@; coso,

Indeed, the positive signs of the elements of the side
diagonal are determined by the fact that the wavenum-
bers for the metamaterial have negative signs. Obvi-
ously, matrices (5) and (14) are mutually inverse

(M, = L,"). Then,

L=LM, =1, (15)
where I is the single operator. It’s obvious that trl = 2.
Therefore, taking into account (7), such a structure is
transparent.

Thus, a rule can be formulated: a two-layer spa-
tially symmetric structure, which includes layers of an
ordinary dielectric and an isotropic metamaterial of
the same thickness, is transparent for any angles of
incidence if the following conditions are met:
E€meta = ~€d> Umeta = ~Mg-

In a more general case, a two-layer spatially sym-
metric structure is transparent if it includes a dielectric
layer and a metamaterial layer with arbitrary thick-
nesses and complex material parameters that satisfy
the condition of equality of their electromagnetic

thicknesses in modulus @4 = .-

Vol.66 No.11 2021
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Fig. 3. Dependence of the dielectric (a) and magnetic (b)

permeability of the layers on the spatial coordinate: €], €]
are the real and imaginary parts of the dielectric constant

of an ordinary dielectric, d is the thickness of dielectric
and metamaterial layers.

As an example, Fig. 4a shows the distribution of the
electric field of TE-waves from spatial coordinate zin the
spatially symmetric structure of the thickness of the
dielectric and metamaterial layers d; =d, =0.01 m,
dielectric and magnetic permeability of dielectric
g, =15.3, u, =1, respectively, the dielectric and mag-
netic permeability of metamaterial €, = —15.3, W, = —1,

and accordingly, frequency f = 10’ Hz. Figure 4b shows
the distribution of the electric field of TE-waves from
spatial coordinate z for the case of different layer thick-
nesses and equal electromagnetic thicknesses. The
thicknesses of the dielectric and metamaterial layers

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS
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Fig. 4. The structure of the normalized electric field in a
two-layer symmetric structure: (a) for the case of equal
layer thicknesses and equal electromagnetic thicknesses
(b) for the case of different layer thicknesses and equal
electromagnetic thicknesses.

are d, =0.01 m and 4, = 0.005 m, respectively, the
dielectric and magnetic permeability of the dielectric
g, =15.3, 4, =1, dielectric and magnetic permeability
of the metamaterial € =—61.2, |, = -1, and fre-

quency f =2.4 X 10° Hz.

Thus, numerical calculations confirm the correct-
ness of the theoretical results. The field values at both
boundaries of the structures are equal for the selected
layer parameters, and, therefore, the structure is trans-
parent.

3. MULTILAYER SYMMETRIC DIELECTRIC-
METAMATERIAL STRUCTURE

Consider multilayer transparent structures includ-
ing an arbitrary number of dielectric and metamaterial
layers. First of all, consider a four-layer structure that
includes two layers of an ordinary dielectric of the

same thickness with complex material parameters g,,
W, €,, and W,, described by operators ﬂl and ﬂz respec-
tively, and two layers of metamaterials of the same
thickness with parameters €; = —¢, 3 = —|1;, €4 = —¢€,,

and |, = —l,, described by operators Ml and M;
respectively. Figure 5a shows an example of the depen-
Vol. 66
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dence of the dielectric constant on the spatial coordi-
nate for a four-layer optically transparent structure. A
similar dependence exists for the magnetic permeabil-
ity (Fig. 5b). Obviously, the resulting transformation
operator of such a structure is found as

L=L,LMM, =1. (16)

Indeed, in accordance with the previous section,

we define I:ll\A/[1 =fandthen L = f,ziMz = ﬂzMQ =1

Thus, condition (8) is satisfied and the considered
four-layer structure is transparent.

In a more general case, a symmetric multilayer
structure is transparent if the number of dielectric lay-
ers is equal to the number of layers of a metamaterial
of arbitrary thickness and, in pairs, for all layers, the
condition ¢, = —);, where ; is the optical thickness of
the ith dielectric layer and 1, is the optical thickness of
the ith layer of the metamaterial.

Moreover, in accordance with the theory of layer
permutation stated in [3], a change in the order of
alternation of layers in a given transparent structure
does not affect the calculation result. Indeed, it can be
shown that

. L=MLLM, . (17)
=L,M,LM, = M,LML, =...=L

The validity of expression (18) can also be verified by
simple multiplication of the matrices of operators. To
do this, consider ﬂZMZﬂ,Ml. Because I:JV[I =1 and
ﬂzM2 =1, then 1321\7[21:11\7[1 = 1. Similarly, it can be
shown that since I:lMl =1, then Mzﬁlmlﬂz =
Mﬁﬂz = M2ﬁ2 =1, etc. Hence, the conclusion is

obvious that this four-layer structure is also transpar-
ent in any order of layers.

In the general case, for an optically transparent
structure, one can write

N

D LM, =1, (18)
i=l1

where ﬁi are operators of dielectric layers with com-
plex dielectric € and magnetic [, permeabilities,

Mi are operators of layers of a metamaterial with a

complex dielectric —¢; and magnetic -, permeabili-
ties. Moreover, based on the theory [3], it can be
argued that the order of alternation of layers does not
affect the transparency conditions of the structure.

Figure 6a shows the distribution of the electric field
of TE-waves in a structure including two dielectric
layers with thicknesses d; = d, =0.01 m, dielectric
constants € =17.3, &, = 4.3 respectively, and mag-

netic permeabilities i, = 1.1, n, = 1.1 respectively and
two layers of metamaterial with thicknesses

dy=d, =0.01 m, dielectric constants &; =—4.3
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Fig. 5. Dependences of valid Re (¢) and imaginary Im (g)
parts of the dielectric (a) and magnetic (b) permeabilities
from spatial coordinate z for a transparent structure.

g, = —17.3 respectively, and magnetic permeabilities
W, = —=2.1, i, = —1.1 respectively. Figure 6b shows the
calculation results for the case when the order of alter-
nation of the second and third layers is changed. In
both cases, the fields at the output of the structure are
equal to the fields at its input, i.e., condition (9) is sat-
isfied and the structures are transparent.

4. MEDIA
WITH CONTINUOUS PARAMETERS

Generalizing this result for a structure with contin-
uously varying parameters (Fig. 7), we find that the
structure is transparent if the real and imaginary
parts of both the permittivity and permeability are
centrally symmetric functions with respect to the ori-
gin (z = 0). In this case, obviously, it is necessary to
fulfill conditions

d d
_[e(z)dz =0 Iu(z)dz =0.
Za Za

Note that for conditions (19) to be satisfied, the
structure does not have to have spatial symmetry. First
of all, above we are talking about symmetry for elec-
tromagnetic thicknesses. Moreover, based on the
results of [3], in the case of continuously varying

(19)

Vol.66 No.11 2021
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Fig. 6. The structure of the normalized electric field in a
four-layer electromagnetic structure for the cases: normal
order of layers (1, 2, 3, 4) (a) and inverted order of layers
(1, 3,2,4) (b).

parameters under conditions (19), dependences €(z)
and L (z) can be anything.

5. PT-SYMMETRIC STRUCTURES

It was indicated in [15—19] that the condition of PT
symmetry in electrodynamics and optics is the com-
plex conjugation of the dielectric and magnetic per-
meabilities of the layers, i.e., in the case of a two-layer
structure for one of the layers, the material parameters
have form ¢, = €+ je", u, = u'+ ju", for the second

layer €, = €'- je", W, =u'- ju". In this case, the

VYTOVTOV et al.

Hamiltonians of the layers will be complex conjugate.
However, this is not a sufficient condition for the
transparency of the considered electromagnetic or
optical structure. Indeed, the matrices of the operators
of both layers have form (5), and their product is not
the identity matrix. Let’s show it.

cos ((pl + jcpi') ~Lsin ((pi + jtpi')
L=LL, = b
—jp sin ((pi + jcpi') cos ((pi + jcp'{)
cos(@) —Jei | —Lsin(ei —Jjgi) 0

D

bl

—jp, sin ((p'l - jtpl') cos ((pi - jcpi')

where for the TE-type wave

@, is the real part of the electromagnetic thickness and
@, is the imaginary part of the electromagnetic thick-

ness. It follows from (20), (21) that I:J:z # 1. More-
over, condition (9) is not automatically satisfied
for (21). Indeed, the trace of matrix (20) is equal to

trL = tr(L,L,) = %(2 + 2y &Jcos(lp;)
P P (22)
+ 1(2 - &j cosh(2(p}').
2 D D

Obviously, in (22), tr (L,L,) # 2 with arbitrary param-
eters of the structure.

To satisfy the transparency conditions for such sys-
tems, it is necessary to satisfy identities (9) or (13). So,
the two-layer PT symmetric structure, described by
complex-conjugate permittivity and permeability, can
be transparent only if additional conditions are met.
This means that its use for these tasks is impractical.
Exceptions are media with zero real parts of the per-
mittivity and permeability described in [20—22].

€
Re(e)
N
I Im(e)
| S d
e
—d ——_———— |z

Fig. 7. lllustration of continuously changing parameters.
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However, such media are a special case of media pre-
sented in [23, 24] and this study.

CONCLUSIONS

Thus, layered isotropic media are considered,
including layers of dielectric and metamaterial. First
of all, the conditions for the transparency of an inho-
mogeneous, in particular, a layered structure, both
from a conventional dielectric and with layers of an
isotropic metamaterial, were obtained. It is shown that
the condition for the transparency of a multilayer
structure is that the parameters of the corresponding
periodic structure belong to the boundary of the for-
bidden region. In other words, the trace of the trans-
formation operator matrix must be equal to two in
absolute value. The case of permutation of layers is
considered and it is shown that the order of alternation
of layers does not affect the conditions for the trans-
parency of the structure when these conditions are
met. It is also shown that for the transparency of so-
called PT symmetric structures require the fulfillment
of additional conditions obtained in this study.

It should be noted that the currently known meta-
materials are resonant structures; therefore, in prac-
tice, spatially symmetric structures can be completely
transparent only in a narrow frequency range.

APPENDIX

The condition for the transparency of an isotropic
structure is the equality of the field components at its
output to the field components at its input:

Ex — ExO
H H,,

y

(A.1)

Further, given that the components of the fields at the
output of the structure can be obtained using the
transformation operator matrix as

Ex — Lll L12 ExO (A2)
H|~ |Ly L[]
we obtain equation
E| _|Li Lof|Ex A3
HyO LZ] L22 HyO
Let us write (A.3) in scalar form
{Exo =L\ E, + LpH ) (A.4)
H, =L, Ey+ LyH),

Expressing from second equation (A.4) H ,, substitut-
ing it into the first equation in (A.4) and performing
simple algebraic transformations, we obtain

L+ Ly =1+ Ly Ly = Ly Ly (A.5)
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Taking into account that the transformation matrix of
an isotropic structure is always unimodular [1, 3], that
is, 1,,L,, — L1, =1, we obtain the final expression
that determines the transparency condition for the
layered isotropic structure:

trL =L, + L,, = 2. (A.6)

In this case, any phase shift, even with equal field
amplitudes at the input and output, indicates the
opacity of the structure, since the phase shift will lead
to a rotation of the polarization plane.
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