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Abstract—A technique allowing to model scattering characteristics for bodies of arbitrary geometries is sug-
gested on the basis of the method of extended boundary conditions. The scattering characteristics include
those ones, which are averaged over orientation angles. The 2D problem of diffraction of a plane wave by
dielectric bodies having a complicated geometry of the cut and, in particular, by bodies similar to fractals is
considered. The numerical algorithms of the diffraction problem solution on the basis of the systems of inte-
gral equations of the first and second kinds are compared. The correctness of the method is confirmed with
the help of the verification of the optical theorem fulfillment for various bodies and by comparing with the
calculation results obtained by the modified method of discrete sources.
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INTRODUCTION

The problem of wave diffraction by a dielectric
body of a complicated geometry is rather actual and it
remains to be comparatively little investigated,
because its solution is rather complex. The results of
modeling the characteristics of wave scattering by
dielectric bodies are of important interest, for exam-
ple, in such fields as the optics of inhomogeneous
media, laser defectoscopy, projecting of absorbing
coatings, and others [1—3]. At present, a number of
analytical and numerical methods are developed for
solving these problems. The T-matrix method [4] and
the discrete source method [5] are the most wide-
spread of them. In spite of that, the requirements of
modeling diffraction processes increase rather quickly.
Therefore, the problem of developing more universal
methods of solution of diffraction problems still
remains actual. The wide popularity of the T-matrix
method is explained in many respects by the fact that
this method can be used to fulfill comparatively easily
such an important, for example, in astrophysics, pro-
cedure as averaging the characteristics of scattering of
a body over its orientation angles measured with
respect to the incident plane wave. However, the tra-
ditional (classic) variant of the T-matrix method [4],
as some of its recently developed modified variants
[5, 6], can be applied to the solution of problems of
diffraction by scatterers having an analytical boundary.

The generalization of the T-matrix method based
on the extended boundary condition method
(EBCM) for solving the diffraction problem with the
Dirichlet boundary condition in the 2D and 3D cases
is suggested in works [7, 8]. The 2D case is also con-
sidered for the impedance boundary condition [9].
The EBCM idea is to transfer the boundary condition
from surface  of the scatterer to certain auxiliary sur-
face  situated outside the scatterer at certain suffi-
ciently small distance  from its boundary. The
absence of limitations of restrictions on the scatterer
geometry can be declared as the main advantage of the
EBCM. This method can be also applied to scatterers
having boundary fractures and to thin screens. In
addition, the EBCM offers the common approach to
the solution of boundary value problems. This
approach does not depend on their type, the dimen-
sionality, the geometry of the scatterer surface, and the
character of the scattered field. We should also note
that, within the framework of the EBCM, the diffrac-
tion problem can be reduced to the solution of the sys-
tem of integral equations (SIEs) of the first or second
kind. This approach is impossible, for example, when
the problem is solved using the method of surface inte-
gral equations.

In this article, we generalize the above technique
for the solution of the 2D problem of electromagnetic
wave diffraction by a dielectric body. Examples of
modeling the characteristics of scattering by bodies
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Fig. 1. Geometry of the problem.
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with cross-sections of a complex geometry and by
bodies similar to fractals are considered. The scatter-
ing pattern and the pattern averaged over orientation
angles are calculated.

1. THE DERIVATION 
OF THE FUNDAMENTAL RELATIONSHIPS

Assume that primary electromagnetic field 
is incident on an infinitely long magnetodielectric cyl-
inder with a generatrix parallel to the  axis and
directrix . The geometry of the problem is shown in
Fig. 1. We consider the case of the Е polarization,
when the vector of electric field intensity  has only
one component  (denoted below as  or ),
which is parallel to the generatrix of the cylindrical
body. Then, the following conjugation conditions are
valid on the scatterer boundary:

(1)

where  is the field inside the cylinder; 
is the total field outside the body, here,  is the inci-
dent field and  is the the scattered (secondary) field;

 denotes the differentiation along the normal,
which is external to ; ; and  and  are the
absolute permeabilities of the media inside and out-
side the body, respectively. The external medium
(where  , and  is the region
restricted by curve ) and the medium inside the cyl-
inder are assumed to be homogeneous, linear, and iso-
tropic. The standard radiation conditions for the scat-
tered field are assumed to be fulfilled at infinity.
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We use the following representations for the solu-
tion of the Helmholtz equation in regions D and De,
respectively [5]:

(2)

where  are the funda-

mental solutions of the scalar Helmholtz equation in 
with the material parameters of media De and , respec-
tively, and  and  are the wavenumbers of the medium
inside and outside the scatterer. Requiring, according to
the EBCM, the fulfillment of conditions (1) on contour

 situated in  and on contour  situated in
region  (see Fig. 1), we obtain the following Fredholm
SsIEs of the first and second kinds, respectively:

(3)

(4)

where observation points  belong to contours ,
, and it is denoted that . Note that most

often the contours that are situated at certain sufficiently
small distance  away from S are chosen as  [5, 10],
i.e., equidistant contours are considered. Let the equa-
tion of boundary S be specified in the parametrical form
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Then, the equations of displaced contours  are writ-
ten in the following form:

(6)

where  and  are the coordinates of the normal to
boundary S of the body. For the solution of systems (3)
and (4), the Krylov—Bogolyubov method is applied.
To this end, we write the systems of equations (3) and
(4) in the form
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The point in (9) means the derivative with respect to .
Next, we represent unknown functions  in the
form of sums

(11)

where  are pulse functions

(12)

Here,  , Δ = tmax/N is the grid

step, and  is the number of basis functions. Next,
substituting (11) into systems of integral equations (7)
and (8) and equating the left- and right-parts in the
chosen on curves  collocation points with coordi-
nates , we obtain the following systems of
algebraic equations in quantities :

(13)

or

(14)

where the matrix elements and right-hand sides are
calculated by the formulas
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Proceeding to the asymptotic form of the scattered
wave field provided that  and taking into
account formulas (2), (5), (11), and (12), we obtain the
following expression for the scattering pattern:
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Fig. 2. Angular dependences of the scattering patterns of
(a) the elliptic cylinder, (b) the body with the section in the
form of a quatrefoil, and (c) the body with the rectangular
section calculated by (curves 1) the MMDSs and (curves 2)
the EBCM.
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second kinds for the solution of the formulated dif-
fraction problem.

Let a body be irradiated by the plane wave

(18)

where  is the incidence angle and . Then, in
the case, when the particle orientation with respect to
irradiation angles  is equiprobable, we obtain for the
averaged pattern at the fixed angles of incidence and
observation of the plane wave

(19)

One of the criteria for the correctness of the obtained
results is the optical theorem written in the form [11]

(20)
where

(21)

As the estimate of the accuracy of the optical theorem
fulfillment, we calculate the quantity, which is the rel-
ative difference of the left- and right-hand sides in for-
mula (20),

(22)

2. NUMERICAL RESULTS
Consider the results of numerical modeling. We

assume everywhere in what follows that a body is irra-
diated by plane wave (18). At first, consider as an
example the problem of diffraction by an elliptical cyl-
inder, a cylinder with the section in the form of a qua-
trefoil, and a cylinder having a rectangular section.
The equation of the contour of the body with the sec-
tion in the form of a quatrefoil has the following form
in the polar coordinates:

(23)

Figures 2a—2c show the angular dependences of the
scattering pattern for the corresponding geometries.
These dependences are obtained for the following val-
ues of the problem parameters:  

 and . The material parameters of the
external medium are everywhere  and .
The dimensions of the bodies are as follows: the ellipse
semi-axes or half-lengths of the rectangular sides are

 and  and the parameters  and
 are for the body with the quatrefoil section.

The results are compared with the patterns obtained
with the help of the modified method of discrete
sources (MMDSs) [5, 12]. Note that the MMDSs
cannot be directly applied to the problem of diffrac-
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Table 1. Absolute and relative errors of the calculation of the scattering pattern obtained with the help of the MMDSs and
EBCM

N
SIEs of the first kind SIEs of the second kind

absolute error relative error, % absolute error relative error, %

Diffraction by the elliptic cylinder

48 1.295 × 10–2 2.038 1.453 × 10–1 24.297

96 1.904 × 10–3 0.230 4.183 × 10–2 7.238

192 6.096 × 10–4 0.067 1.144 × 10–2 2.003

288 5.834 × 10–4 0.075 5.539 × 10–3 0.977

384 5.607 × 10–4 0.075 3.450 × 10–3 0.612

Diffraction by the body with the section in the form of a quatrefoil

48 1.643 × 10–1 10.411 3.836 × 10–1 21.169

96 2.499 × 10–2 1.442 9.462 × 10–2 5.125

192 5.802 × 10–3 0.325 2.534 × 10–2 1.370

288 2.984 × 10–3 0.166 1.143 × 10–2 0.619

384 2.176 × 10–3 0.121 6.474 × 10–3 0.351

Diffraction by the body with the rectangular section

48 3.498 × 10–2 4.781 5.035 × 10–2 6.795

96 1.466 × 10–2 1.956 1.417 × 10–2 1.715

192 7.358 × 10–3 0.879 4.773 × 10–3 0.466

288 5.229 × 10–3 0.561 3.122 × 10–3 0.248

384 4.219 × 10–3 0.429 2.641 × 10–3 0.208
tion by bodies with boundary kinks. Therefore, the
contour of the body axial section is approximated by a
smooth contour [12] for the solution of the problem
with the use of the MMDSs. We should also note that
the MMDSs provides for the high accuracy of calcula-
tion for bodies with smooth boundaries, such as an
ellipse, a multifoil, etc.

Table 1 shows the differences of the absolute value
of the scattering pattern for the indicated geometries.
These differences are obtained using two methods; the
MMDSs and EBCM. It is seen from Table 1 that the
difference of results decreases, when the number of the
used basis functions increases. The mentioned infor-
mation also implies that, because of the faster con-
vergence, the use of the equations of the first kind is
more preferable for bodies with smooth boundaries.
The use of the equations of the second kind provides
for better results in the case of the body with the rect-
angular section.

Figure 3 shows the geometries of cylinders similar
to fractals that have the sections in the form of the
Koch snowflake and the Sierpinski curve (the first
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
iteration) [13]. Figures 4a and 4b illustrate the angular
dependences of the scattering pattern for the indicated
cylinders for the following problem parameters:

  and . The maximum trans-
verse dimension of the body with the section in the
form of the Koch snowflake and the body having its
section in the form of the Sierpinski curve is 
along the x axis. The two different incidence angles

 and 45° are considered. It follows from the fig-
ures that, for the investigated geometries, the points of
the maxima of the angular dependences of the scatter-
ing pattern approximately coincide with the incidence
angles of the plane wave. It is also seen that the pattern
dependence for both the body with the section in the
form of the Koch snowflake and the body with the sec-
tion in the form of the Sierpinski curve has sufficiently
large side lobes.

The accuracy of the fulfillment of the optical theo-
rem is also controlled for the scatterer geometries con-
sidered above. In all of the cases, we choose the num-
ber of basis functions so that the number of collocation
points on one wavelength is . In this case, rel-

410 ,k −δ = 1,iμ = 4iε =

10kd =

0 0ϕ =

25Nλ =
 ELECTRONICS  Vol. 65  No. 9  2020
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Fig. 3. Geometries of the bodies with the section in the
form of (a) the Koch snowflake and (b) the Sierpinski
curve.

x
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Fig. 4. Angular dependences of the scattering patterns of
the bodies with the section in the form of (a) the Koch
snowflake and (b) the Sierpinski curve for two angles:
(curves 1)  and (curves 2) 45°.
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ative permittivity  of the body medium is varied
within the limits 4–103 and the relative permeability is
chosen to be equal to unity. As the result of calcula-
tions, we obtain that the relative difference of the
right- and left-hand sides of equality (20), i.e., quan-
tity , is small and does not exceed .

We also verify the accuracy of the fulfillment of the
Ufimtsev theorem [14] for the considered bodies.
According to this theorem, the integral scattering cross
section of a black body is exactly twice as small as the
integral cross section of the perfectly conducting body
with the same shady contour, i.e., the boundary

iε

Δrel
35 10−×
JOURNAL OF COMMUNICATIONS TECHN
between the illuminated and shady parts of the body.
This statement is true for all convex bodies that have
the linear dimensions and minimal curvature radius
much larger than the wavelength. We should note that
the accuracy of the Ufimtsev theorem fulfillment
depending on the scatterer dimensions is calculated in
works [15, 16]. Bodies of the following geometries are
considered: a spheroid, a circular cylinder, and a cone-
sphere, i.e., a cone having a foundation in the form of
a hemisphere. It is determined that the accuracy of the
theorem fulfillment is sufficiently high, when the
radius of the foundation of the considered bodies of
revolution is . For the spheroid,  is the wave
dimension of the minor semiaxis. It is interesting to find
out the accuracy, within which this theorem is fulfilled
for bodies having a complex geometry. Table 2 shows
the results of the test of the Ufimtsev theorem for the
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Table 2. Result of testing the Ufimtsev theorem

Scatterer geometry
Integral scattering cross 

section of a perfectly 
conducting body

Integral scattering cross 
section of a black body

Ratio of the cross 
sections

Ellipse 2.406448 1.088509 2.210774

Quatrefoil 7.876322 3.651952 2.156743

Quadrilateral 2.716768 1.251197 2.171335

Hexagon 5.928531 2.934776 2.020096

First iteration of the Koch snowflake 5.398117 2.612487 2.066275

First iteration of the Sierpinski curve 5.402070 2.498518 2.162109
scatterers of the considered above geometries. It is seen
from the table that the Ufimtsev theorem is fulfilled
approximately only for the bodies having the section in
the form of the Koch snowflake or a hexagon.

Figure 5 shows the scattering patterns averaged
over orientation angles for the body geometries con-
sidered above. It is seen from the figure that the max-
ima of all of the dependences correspond to angle 
equal to zero. It is also seen that, in the cases of the
bodies with the sections in the form of the Sierpinski
curve, a hexagon, and the Koch snowflake, the aver-
aged patterns have larger values for angles  exceeding
90° than the corresponding patterns for the elliptical
and rectangular cylinders.

α

α
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Fig. 5. Scattering patterns averaged over orientation angles
and depending on angle : for (curve 1) the body with the
section in the form of the regular hexagon, (curve 2) the
body with the section in the form of the Koch snowflake,
(curve 3) the body with the section in the form of the Sier-
pinski curve, (curve 4) the cylinder with the rectangular
section, and (curve 5) the elliptic cylinder.
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CONCLUSIONS

Two numerical algorithms based on the SIEs of the
first and second kinds have been developed with the
use of the EBCM. These algorithms allow us to calcu-
late the scattering characteristics of magnetodielectric
bodies having arbitrary geometries. The results of cal-
culation of the scattering pattern have been obtained
for a large set of bodies of different geometries includ-
ing scatterers similar to fractals. The results obtained
with the help of the methods based on the EBCM have
been compared with the results obtained with the help
of the MMDSe. It has been shown that the EBCM
enables one to obtain the results of calculation of the
scattering pattern with a sufficiently high accuracy. It
has been illustrated that the method based on equa-
tions of the first kind allows us to obtain results with a
higher accuracy in the case of the smooth boundary of
a body. The accuracy of the fulfillment of the optical
theorem has been tested for the considered geome-
tries. It has been shown that the accuracy of the fulfill-
ment of the optical theorem is . The angular
dependences of the averaged scattering pattern have
been obtained for different geometries of scatterers.
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