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Abstract—A low computational complexity scheme based on the modified Wigner–Ville distribution
(MWVD) is developed for estimating the instantaneous frequency of continuous phase modulation (CPM)
signals under low signal-to-noise ratio (SNR) scenario. To simplify the computation of the MWVD, a low
order Chebyshev polynomial is chosen as the kernel function for suppressing the cross-terms. The implemen-
tation of this instantaneous frequency (IF) estimator is done through the Viterbi algorithm. The simulation
results show that our scheme outperforms other estimating methods under low SNR scenario.
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INTRODUCTION
Continuous phase modulation well known for its

excellent spectral efficiency, low-energy consumption
and constant envelope [1, 2], has been widely used in
satellite communications [3, 4], fiber-optical commu-
nications [5] digital video broadcasting [6], telemetry
[7] and so on. It could also be a potential candidate to
multi-carrier waveforms for 5G as well as the Internet
of Things (IoT) and wireless sensor networks [8].
Under low SNR scenario, the development of low
complexity scheme of recovering CPM signals would
render the CPM a more competitive alternative for
these applications.

A wide array of techniques such as energy detec-
tion, matched filter detection, cyclostationary feature
detection, covariance based detection and others have
been developed [9–12]. However, under low-SNR
scenario, these methods typically require to process a
large number of samples, which could demand too
long processing time to be feasible for many 5G or IoT
applications. Furthermore, most of these schemes are
only suitable for detecting the existence of the signals
but not capable of recovering the IF of the signals.
More interesting schemes which involve the IF esti-
mation of the CPM signals proposed in [13] and fur-
ther developed in [14], however, do not perform well
under low SNR scenario.

In this paper, we develop a low computational
complexity scheme to estimate the IF of CPM signals
under low SNR scenario. The derivation of this IF
estimator is based on the modified Wigner–Ville dis-

tribution (MWVD) where we choose a simple Cheby-
shev polynomial of order 5 as the kernel function for
suppressing the cross-terms [15, 16]. Thus, this sim-
plifies the computation of the MWVD which yields a
novel estimator capable of recovering IF of CPM sig-
nals under low SNR scenario. The implementation of
this estimator is then done through the Viterbi algo-
rithm for further reducing computation complexity. As
a comparison, we also employ the DFT-frequency
extraction method as well as the non-coherent method
proposed in [14]. The simulation results show that our
scheme outperforms these methods under low SNR
scenario.

The paper is organized as follows. In Section 1 we
introduce the model of CPM signals. The algorithm
for the IF estimation in a low SNR scenario is derived
in Section 2. The simulation results are presented in
Section 3.

1. PROBLEM FORMULATION

A CPM signal  is defined as

(1)

where Ε and T represent the symbol energy and sym-
bol period respectively, f0 denotes the carrier fre-
quency. The information carrying phase is

(2)
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with  representing the informa-
tion symbol and h being the modulation index. The
quantity q(t) is equal to

(3)

g(t) is frequency pulse with time duration LT. The
model considered in this paper is

(4)

where x(t) is the observed signal x(t) and n(t) denotes
white Gaussian noise, and the amplitude A as well as the
information-carrying phase ϕ(t) defined in (2) is
unknown to us. Thus, our goal in this paper is to develop
a low computation scheme that is capable of recovering
ϕ(t) of the CPM signal  from x(t)
under low SNR scenario, and its derivative is just the
IF of CPM signal.

2. MATERIALS AND METHODS

In this section, we first introduce the modified
Wigner–Ville distribution which is exploited to reduce
cross-term interference with the proper choice of the
kernel function. Then, based on this MWVD, we
develop a low computation complexity scheme to esti-
mate the instantaneous frequency (IF) of CPM Sig-
nals. Finally, this scheme is implemented through the
Viterbi algorithm.

2.1. The Modified Wigner–Ville Distribution

The modified Wigner–Ville distribution (MWVD)
can be expressed as

(5)

To simplify the estimator, we choose the kernel  as

(6)

where  is the Chebyshev polynomial of order 5,
i.e.,
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The ambiguity function (AF)  in (5) is defined as

(8)

with τ and θ being the frequency and time shift. In
order to obtain the parameters of the kernel function

 that can effectively suppress the cross-terms
yielded from  we first transform  into the
polar coordinate  through

(9)

and then solve the following optimization problem

(10)

The solution of (10) yields the optimal kernel as

(11)

Substituting Φopt into (5), we obtain  which
leads to the IF estimator as

(12)

It is shown that under the low SNR situation the high
noises could result in the estimation errors behaving dom-
inantly impulsive [17]. Thus, we need to modify (12),
which enables it to effectively extract the IF of CPM
signals under the low SNR scenario.

2.2. Estimating IF of the Signals Based 
on the Viterbi Algorithm

In this section, we first modify the estimator of the
IF of CPM signals given in (12) to ensure that the
modified estimator can effectively extract the IF under
the low SNR situation. Then the computation of the
IF through the modified estimator is done by the Vit-
erbi algorithm.

Throughout this paper, we assume that the IF of
the given signal is continuous function of the time. We
first discretize  of (12) which yields a 
matrix
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Note that since the integral along the frequency
axis is equal to the energy of the signal at time ti [18],

the maximum value of  at time ti is positive.
Therefore, for each time instance n, we transfer (13) to
optimize the summation of a set of sub-problems as
suggested in [19]. That is, for the fixed time interval
[n1, n2] with n1 and n2 being positive integers and each
path k between n1 and n2, we compute the following
optimization problem

(14)

Here K denotes the set comprised of all the paths
between n1 and n2 and k(n) represents the path k at
time n with . On the other hand, under the

low SNR scenario, [17] suggests that the estimation
errors behave dominantly impulsive. To resolve this,
we also need minimizing the distance between two
adjacent time instance k(n) and k(n + 1) of path k
from (14). That is, we simultaneously require to max-
imize the following equation

(15)

where the exponential decay function g(x, y) is defined as

(16)

Combing equation (14) and (15), we obtain the modi-
fied estimator of IF as

(17)

where the non-decreasing function h(x) is introduced
to assign a value for each element in (14) for simplify-
ing the implementation of the Viterbi algorithm. To
define h(x), without loss of generality we assume that
the rows of the matrix (13) is sorted to satisfy

(18)

with . Then the non-decreasing function h is
defined as

(19)

The procedure computing the estimator (17) based on
Viterbi algorithm proceeds as follows:

(i) Initialization: Define  as the path metric
from the starting point to point (i, j) and  as the
local optimal path composed of a set of points from
the starting point to point (i, j). At time t1 choose

 and set  for .

(ii) At time ti for , compute the path metric 
for each  and each  as follows

(20)

where  is the path metric of the local optimal path
 which starts from the starting point to point (i – 1, l).

The function g and h are defined in (16) and (19)
respectively.

For each , the survival path at time ti is
 which maximizes the path metric (20), i.e.

(21)

The local optimal path  for  and
 is therefore equal to

(22)

(iii) If , replace i with i + 1 and repeat
step (2). Else, we have i = M which yields a set of the
local optimal path  for . The optimal
path is .

3. RESULTS
In this section, we utilize the scheme developed in

the above section to extract the IF from a CPM signal.
First, we deal with the raised cosine of LT (LRC)
based CPM signal, which is easier to recovery with our
method because of its continuous frequency. In order
to compare the performance of our scheme with the
frequency estimate method proposed in [14], we uti-
lize the example of [14] in which the modulation index
is chosen to be h = 0.29 together with the correlation
length L = 1 and level number M = 4. Under SNR = 0
dB situation, Fig. 1 shows that the estimated the IF is
depicted in the solid line while the actual IF is in the
dotted line. The estimation results under SNR = –3 dB
scenario are shown in Fig. 2 where the solid and dotted
line represents the estimated and actual IF respec-
tively. The BER curves of our scheme and the methods
from [] are shown in Fig. 3 where line with Δ corre-
sponds to the performance of our scheme while line
with + or ○ represent the performances of DFT as well
as non-coherent method respectively. Furthermore,
we try to extract the frequency of the rectangular-
based (LREC) CPM signal with frequency hopping,
and successfully extract the signal IF under SNR =
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Fig. 1. Estimated frequency and actual frequency of LRC-
based CPM signal with SNR = 0 dB.
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Fig. 2. Estimated frequency and actual frequency of LRC-
based CPM signal with SNR = –3 dB.
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Fig. 3. BER curves of several methods.
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Fig. 4. Estimated frequency and actual frequency of LEC-
based CPM signal with SNR = 0 dB.
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0 dB scenario. Modulation index is chosen to be h =
0.4 together with the correlation length L =1 and level
number M = 4. Figure 4 shows that the estimated IF is
depicted in the solid line while the actual IF is in the
dotted line.

CONCLUSIONS

A low computational complexity scheme based on
the modified Wigner–Ville distribution (MWVD) is
developed for estimating the instantaneous frequency
(IF) of CPM signals under low SNR scenario. To sim-
plify the computation of the MWVD, the Chebyshev
polynomial of order 5 is chosen as the kernel function
for suppressing the cross-terms. The implementation
of this IF estimator is done through the Viterbi algo-
rithm. The simulation results show that our scheme
outperforms other estimating methods under low
SNR scenario.
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