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Abstract—A new biorthogonal system of wavelet bases has been constructed, which is oriented toward recon-
structing the useful signal of a measuring system if the measurement process is represented as a convolution
model. New biorthogonal wavelet bases are obtained by using a instrumental function to modify a
Kravchenko orthogonal wavelet system with a finite spectrum. The properties of new biorthogonal fre-
quency-modified wavelets are studied, and digital filters that realize fast computational algorithms are con-
structed. Schemes for multiresolution analysis are proposed, which, during discrete wavelet transform,
immediately solve the problem of reconstructing the useful signal, as well as effective noise suppression,
which can significantly speed up computations.
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1. FORMULATION OF THE PROBLEM
In various fields of physics (radio astronomy, radar,

infrared radar, various types of microscopy, etc.), it is
necessary to take into how the measuring path of the
technical system and the communication channel (the
inertia of the medium through which the signal prop-
agates) influence recorded signals or images. In this
case, there are distortions in the real signal distribution
that depend on the instrumental function (response of
the apparatus) of the technical system, and noise is
added. If the form of the instrumental function is
known, then the problem of reconstructing the useful
signal or at least the problem of improving the distri-
bution quality of the recorded signal is reduced to solv-
ing an integral equation that relates the recorded and
initial distribution of the sought value. In the mathe-
matical description of this problem, the convolution
model of representing the measuring process is widely
used, which considers the solution to Fredholm con-
volution integral equation of the first kind. As is
known, such a problem is ill-posed, i.e., unstable to
arbitrarily small measurement errors. Therefore, when
solving it, the useful signal is estimated based on avail-
able a priori information about the signal, noise,
instrumental function, and technical requirements for
the processing system.

The general form of the convolution integral equa-
tion has the form

(1)

The convolution operator  is determined as follows:

For practical application, the following problem
statement is the most interesting: to estimate the useful
signal x(t) initially distorted by the impulse response λ
(t) of a linear stationary system followed by noise n(t):

(2)

The noise n(t) is assumed to be additive and white
Gaussian noise (AWGN) with variance σ2. AWGN is
a model well suited to mathematically describe many
physical processes.

There are many different methods for solving (1)
[1–7]. For Fourier transform (FT), the most widely
used are FT methods with Tikhonov regularization
and the Wiener filtering method, which use a regular-
izing component R(ω).
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Amplified noise  is reduced by a filter
with a frequency response [1–7]

(3)

Note that for R → 0, the spectrum  becomes the
expression for inverse or pseudoinverse filtering.
Thus, the problem becomes ill-posed, and the solu-
tion is unstable.

The following relation holds for FT estimation of
the useful signal xr, calculated by FT regularization
methods:

(4)

Here  and  are the terms of the solution spec-
trum , respectively, of the FT of the cleaned signal xr

and past noise  entering into the estimate of the
useful signal .

A distinctive feature of using FT to solve (1) is
compact representation of noise  since FT acts as
a Karhunen–Loeve expansion [10–12] and decor-
relates the noise  Therefore, among all linear
transformations with FT, the main noise energy 
is concentrated in the smallest possible number of
coefficients. The best results in solving the convolu-
tion integral equation by FT methods can be achieved
when an undistorted signal x(t) is uniformly smooth
and effectively approximated by a Fourier basis.

However, although the Fourier basis distinguishes
frequencies well, it does not provide information on
sharp and short bursts, drops, discontinuity points,
isolated singularities, nor generally on the local behav-
ior of the function, since the basis exp(jωt) covers the
entire real line, and FT of the function  depends
on the x(t) values for all  [13–23]. In the best
case, a local singularity will have a very wide spectrum
and the signal energy will be concentrated in a signifi-
cant number of Fourier coefficients. Estimation of the
useful signal x(t) is concentrated in a neighborhood of
singular points. In this case, for a compact representa-
tion of the signal x(t) with the indicated singularities,
it is desirable that the basis elements be localized as
best as possible in time and frequency. Wavelet bases
satisfy this requirement. As well, additional conditions
are imposed, such as orthogonality of the basis, com-
pactness of wavelet supports, etc. Subsequently, by per-
forming threshold processing of the expansion coeffi-
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cients in a suitable wavelet basis according to [13, 14, 24],
a near-optimal estimate of the useful signal x(t) can be
achieved.

The use of wavelet transform (WT) assumes that
the choice of the wavelet basis is based on its proper-
ties. Since the solution to the convolution integral
equation is realized in the spectral domain, it is neces-
sary to choose a wavelet basis with a compact support
in the frequency domain, a fairly rapid decrease, and a
small number of wavelet filter coefficients. From this
aspect, Kravchenko wavelets are optimal [25–28];
they have better characteristics compared to known
wavelet systems with a finite spectrum (Meyer, Kotel-
nikov–Shannon wavelets). In addition, it is possible to
use finite wavelets in the time domain (e.g.,
Daubechies wavelets), which have good steepness of
fronts in the frequency domain. The resulting system-
atic error should be estimated for each specific case.

Thus, Fourier and wavelet bases have several
advantages in the representation and processing of sig-
nals. These advantages can be used to create a com-
bined approach to solving convolution integral equa-
tion (1), which should consist of separate blocks [29]:
fast FT (FFT), deconvolution, inverse fast FT
(IFFT), discrete WT (DWT), threshold processing of
the coefficients, and inverse discrete WT (IDWT).
This inevitably leads to additional hardware and time
costs. To ensure maximum efficiency with minimal
computational resources, it is necessary to combine
the solutions of several processing problems in one
wavelet transform. This is done via DWT using a mod-
ification of the selected orthogonal Kravchenko wave-
let system [25–28]. The modified Kravchenko wave-
lets must also meet all the requirements of multireso-
lution analysis (MRA) theory so that it is possible to
construct filter blocks for fast wavelet transforms.
Such a modification gives rise to a nonstationary
MRA based on the family of Kravchenko biorthogonal
wavelet bases.

2. WAVELET APPROXIMATION 
OF THE SOLUTION TO THE CONVOLUTION 

INTEGRAL EQUATION

Let the scaling functions and wavelets
 form an orthogonal

multiresolution expansion L2( ) ( , ). Let us
consider a short-scale approximation of a piecewise
continuous function f(x)   which has limited
variation

In the case of nondifferentiability of the function,
the total variation f(x) can be calculated by considering
the derivatives in the sense of generalized functions
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[13, 30–32]. At scale J, the orthogonal projection f(t)
on  has the form

(5)

where   are the subspace orthogonal projection
operators  and Wj, parameter j = j0, …, J – 1, and

j0 is the roughest scale; 

 are shifts/compression of the

scaling and wavelet functions; 

 are the expansion coefficients of
the basis of the scaling and wavelet functions.

Because VJ admits an orthonormal basis
 this projection can be rewritten as the

finite sum of scaling functions at scale J with a uniform
shift k:

(6)

Wavelets can efficiently approximate uniformly
smooth signals by a finite number of basis functions.
The approximation error is related to the Sobolev dif-
ferentiability [30, 31]. It can be calculated for discon-
tinuous signals with limited variation [39, 40]. The
spaces of the Sobolev functions  which are s
times differentiable, are the spaces of functions

, the Fourier transform of which satisfies the
inequality

Here we consider the wavelet  having a
quick decrease and q zero moments. This means that
for any 0 ≤ p ≤ q and  there is a constant Cm such
that

The wavelet transform can be considered a multi-
scale differential operator of order q [13, 14]. This
establishes the relationship between the differentiabil-
ity of the function f and the decrease of its wavelet
transform at small scales [13]. Therefore, efficient
approximation  requires q > s. According to
[13], the Sobolev smoothness is equivalent to a fast
decrease in the wavelet coefficients |(f, ψj, k)| for a
decrease in scale j. If f is a piecewise smooth function,
the nonlinear wavelet approximation is more efficient,
in which the approximation scale is refined in the
vicinity of each singularity. Then, the approximation is
calculated by the coefficients of the wavelet expansion
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with the largest amplitude, which can be obtained by
threshold processing of the wavelet coefficients of the
linear approximation. To study the implementation of
nonlinear wavelet approximations, Besov spaces 
are used, which are a natural generalization of Sobolev
spaces for a fractional order of differentiation. The
corresponding embedding theorems have been
obtained in many cases [13, 33, 34]:

Besov spaces contain functions that are not differen-
tiable s times at all points. Even if f is discontinuous,
but the number of discontinuities is finite and f satisfies
the uniform Lipschitz condition α between these dis-
continuities, then  (at 1/p <α +1/2, p = β = γ).

For convenience of notation, we assume that the
sequence of scales j and shifts k is not violated in (5)
and a nonlinear approximation is obtained when some
of the coefficients bj, k take zero values as a result of
threshold processing.

Equation (5) in the frequency domain has the form

(7)

Here  
and  and  are periodic frequency functions

with a period  and 2j + 1π, obtained from the
expansion coefficients  and 

We write (6) in the frequency domain:

(8)
Using the scaling equations [13–20]
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we show that aJ(ω) can be obtained from the frequency
functions aJ – 1(ω) and bJ – 1(ω). In (9) and (10),
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 =  is the
wavelet function of the frequency response with filter
coefficients 

The Fourier transform  is determined by
Eq. (8) at scale J and by ,  at scale J – 1:

(11)

Then,

(12)

Thus, the formula for reconstructing aJ(ω) by aJ – 1(ω)
and bJ – 1(ω) has the form

(13)

In a similar way, using scaling equations (9), (10), we
can obtain an expansion algorithm in the frequency
domain [13–20]:

(14)

(15)

Let us consider the wavelet approximation of the
solution to convolution integral equation (1) in the
frequency domain in the case  
with a limited right-hand side :

(16)

When Kravchenko wavelets with a finite spectrum are
applied, the following theorem holds.

Theorem 1. Let   and 
for   = 
Then, convolution integral equation (1) has a unique
solution in the subspace VJ + 1.

Proof. If , then  =

 where 
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  where  is a periodic
function with a period 2J + 1π.
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Using the frequency function , the FT of the
regularized solution to convolution integral equation (1)
has the form

Since

(17)

Function  is periodic with a period
2J + 2π and is not zero in the intervals

 .

Because  has a period of 2J + 1π, the product
 is a 2J + 2π-periodic function. If 

will be periodically continued with a period of 2J + 2π,
then this will not change (17):

(18)

where  is a 2J + 2π-periodic

continuation of the function  limited to the inter-
val 

Thus, the product of the first three terms in expres-
sion (18) is a 2J + 2π-periodic function (Fig. 1).

We introduce the following notation:

 is a

2J + 2π-periodic frequency function.
We find that
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Consequently,  However, if the frequency
response  is continuous and nonzero at

 then the frequency function
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Fig. 1. Position of Fourier transforms of functions for use of Kravchenko wavelets { }: curve 1, ; curve 2,

; curve 3, .
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If , then y(t) is projected on the space of
the scaling functions of the finest scale VJ. As a result,
the convolution equation is transforms to
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This equation has a unique solution  such
that  Thus,  is a wavelet
approximation of the exact solution  and an estimate
can be obtained.
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Then,

The theorem is proved.
According to Theorem 1, if the function of the

right-hand side  then
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Since there is no signal x(t) or its linear transformation
, the expansion coefficients in (22) cannot be

calculated immediately. Therefore, we will use the
sequence of functions { : k } such that

Since the transformation  is uniform, the function
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of some function . Moreover, the family of func-
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proof below).
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admits construction of a biorthogonal wavelet system
[13–15] that can be used to estimate the useful signal
x(t) initially distorted by the impulse response λ (t) fol-
lowed by noise n(t).

3. CONSTRUCTION OF BIORTHOGONAL 
FREQUENCY-MODIFIED WAVELETS

Let an unknown function  in (1) belong to the
space of scaling functions 
where  is the orthonormal scaling function with a
finite spectrum. As , in accordance with the previ-
ously described advantages, we take the scaling func-
tion from the family of Kravchenko wavelet bases
{ } [25–28]. If we represent the estimate of the
useful signal  from the observed signal  in the
form of an expansion over  then

(23)

If (4) is written as  we obtain

(24)

We denote

(25)

then Eq. (24) takes the following form:

(26)

Thus, the solution to convolution integral equa-
tion (1) with respect to the unknown function 
corresponds to solution (26) with respect to an
unknown sequence of expansion coefficients

, which are found as the scalar product
of a known function y(t) and functions

, which are a dual basis in relation to

Taking into account that in signal processing, there
are different ways to set the stabilizing factor ,
and sometimes additional correction of this frequency
response of the signal is required, we introduce the
function  modifying , which admits repre-

sentation (25) in the form .
To solve (1) using DWT, a new biorthogonal wave-

let system is needed, which includes scaling functions
and wavelets modified in the frequency domain that
form two pairs of functions ,  and ,  such
that ,  give rise to a space of scaling func-
tions  and wavelet space , and functions ,
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 form dual bases. As follows from [13–21, 35],
the subspaces  are obtained as an orthogonal
complement to the embedded subspace system 

Subspaces  are mutually orthogonal and form

an orthogonal expansion  Let us consider the
functions  

 such that

(27)

(28)

where ,  is the spectrum of functions from an
orthonormal wavelet system (Kravchenko wavelets
{ }). Transformations (27), (28) perform a linear
mapping of the MRA subspaces Vj and Wj into new
subspaces Uj and Sj. New functions ξj, k, γj, k are trans-
forms of the scaling function ϕj, k and wavelet ψj, k in
subspaces Uj and Sj. According to the MRA require-
ments [13–21, 35], these functions should form a
Riesz basis.

Lemma 1. If j < jmax, then systems of functions
  are the Riesz basis of

subspaces Uj and Sj.

Proof. The linear shell  is dense in
L2( ). To prove that  forms a Riesz basis, we
show that there are positive constants A and B (0 < A ≤
B <∞) in U0 such that

(29)

for all infinite square-summable sequences { }.

According to the definition of the norm and Parse-
val’s identity, we have
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Let for some   Then

With scale values j ≥ jmax (jmax > 0), a situation may

arise when  becomes

infinitely large and stability condition (29) is violated.
In another case, when j ≤ jmin (jmin <0) it may turn
out that

and system of functions  degenerates into an
orthonormal basis. For  the lemma is similarly
proved. Repeating the above steps for the case ,
it can be proved that  forms a Riesz basis.

The following lemma shows that the subspaces {Uj}
form an embedded sequence and satisfy such points in
the definition of the MRA:

(30)

(31)

Lemma 2. The sequence of embedded subspaces
{Uj} satisfies all the requirements of the MRA and

Proof. Transformation (27) translates any function
 into the corresponding single element
 Because {Vj} form an embedded system of

subspaces,  therefore, it is true that
 and there is a chain

Thus, {Uj} form a sequence of embedded sub-
spaces.

The requirement  from the defini-
tion of MRA is checked against the opposite.
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Confirmation of the MRA  will be

proved if  and 

Let some function  then  if

(32)

where  should be a 2j + 2π-periodic function.
Since 

(33)

where  is a 2j + 1π-periodic function and the scal-
ing function ϕ belongs to the Kravchenko wavelet sys-
tem. Given the scaling equation in the frequency
domain, we have

(34)

where the product of the first two terms is a 2j + 2π-
periodic function, since function  is peri-
odic with a period 2j + 2π, as well as nonzero in intervals

  .
From (18) and (27), we obtain

(35)

Equalities (34) and (35) are equivalent when  is
a 2j + 2π-periodic function, and  is periodically
continued with a period of 2j + 2π (Fig. 2). Conse-
quently, 

The validity of embedding of subspaces 
can be demonstrated by assuming that some function

 Then  if

(36)

where  is a 2j + 2π-periodic function and the
function ϕ is also from the Kravchenko wavelet sys-
tem. Since   where

 is a 2j + 1π-periodic function. After the transfor-
mation, this equality takes the form
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Fig. 3. Graphs of functions: curve 1, ; curve 2, ; curve 3, , curve 4, .

F(f)

3

2

1

4

–2J + 2� –2J + 1� 2J + 1� 2J + 2� �

( )f
ja ω 1( )f

jb + ω
2

4 42 ;2
3 3 2

ˆ( ) J J
J

D
+

π π ω∈ −
   π

 
ω 

 

1
0( 2 )JH +ω

Fig. 2. Graphs of functions: curve 1, ; curve 2, ; curve 3, ; curve 4, .

F(f)

3

2 1

4

–2J + 2� –2J + 1� 2J + 1� 2J + 2� �

1( )f
ja + ω ( )f

jb ω
2

4 42 ;2
3 3 2

ˆ( ) J J
J

D
+

π π ω∈ −
   π

 
ω 

 

1
0( 2 )JH +ω
where the product of the first three terms is the 2j + 2π-
periodic function  (Fig. 3). Consequently,

 and the MRA requirement is met

 because 

Summarizing the conditions  and
 we obtain the proof of the statement

 Fulfillment of the condition that
shifts of the frequency-modified scaling function

 formed a Riesz basis follows
from Lemma 1.

Let us show the validity of the scalability relation.
Let some function  Then

(38)

where  is a 2j + 1π-periodic function.
If  then
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Indeed, by changing the variable w = ω/2 in (38),

we obtain  Consequently,  is
a 2j + 2π-periodic function. The scalability ratio

 This differs from the scal-
ability relation of classical MRA in that the spaces {Uj}
form functions nonstationary with respect to the scale

, which follows from (27). For each value of scale j,
the function  is no longer the result of ten-
sion/compression of one function, as in the case of
classical MRA. Depending of the scale j, the support
of the function changes  as well as the frequency

subrange of the function  encompassing .
Therefore, functions  exist only in a range of scales

limited by the frequency range of the function .
In practice, other scale values are not used, since the
spectrum of the observed signal is always within the
spectral range of the function . Let us formulate
the requirements for the subspace of modified wavelet
functions.
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Fig. 4. Graphs of functions: curve 1, ; curve 2, ; curve 3, ; curve 4, .
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Lemma 3. If j < jmax, then subspaces Sj are an
orthogonal complement to the embedded subspace
system Uj

Proof. Transformation (27) translates any function
 into the corresponding single element
. Because {Vj} form the MRA, for each j

there is an orthogonal complement Wj to the space Vj
in the space Vj + 1:

Therefore,
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Since  satisfy all MRA requirements and
 is the projection of  from

 the representation 
  takes place. The basis for sub-

space Sj consists of shifts and scaling of one function .
Thus, taking into account the nonstationarity with

respect to the scale, we write
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With similar reasoning, we can show that
 Consequently,  =
 Continuing this procedure, we

obtain the orthogonal expansion of the space

 =  The property of the MRA
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is violated. Figure 4 shows the relative position of the
Fourier transforms of functions  

It turns out that even if the product 

is limited,  may go beyond the dynamic
measurement range.

Using the dual basis theorem [13–15] and taking
into account the lemmas proved above, we find the
remaining modified functions   which
form dual bases to   and generate a space
of scaling functions  and space of wavelets  such
that    for 

  ,
.

Direct application of the dual basis theorem from
[13–15] determines the Fourier transform of the basis
function, which is dual to  in the sense that

 as follows:

(42)

The denominator in (42) is bounded almost every-
where by Riesz boundaries [13–15] A and B, 0 < A ≤
B <∞, which were obtained in the proof of Lemma 1:
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positive constant, it is obvious that
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In the same way [13–15], we determine the Fourier
transform dual to wavelet function  of the basis

 for which the equality 
holds:

(43)

Since the duality relation  is
commutative , the dual wavelet  itself is a
dual wavelet 

The resulting pairs of modified functions satisfy the
biorthogonality relations 

 =  but the prerequisites for the
existence of a biorthogonal wavelet system are violated

  Therefore, it is
necessary to switch to a new strategy for the formation
of modified dual bases.

To do this, we introduce the 2π-periodic function
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 and  are also bounded almost every-
where by constants A and B, 0 < A ≤ B <∞,

 Then  is a bounded 2π-peri-
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Turning to scaling equations in the frequency domain,
we formulate the following theorem.
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determined by (27), generate a MRA in space 
and the wavelet  during expansion
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(c) the scalability ratio 
(d) there are the properties

Thus,   and  for  There-
fore, two pairs of functions (t), (t) and ,  form
a biorthogonal wavelet system.

Proof. First, we show that   are dual
bases. From direct application of the Parseval’s iden-
tity and periodicity of functions  , for
p = k – n we obtain

Hence,

Based on the fact that  =

 we obtain

The biorthogonality of the shift for modified wavelets
 and  is also proved. For  j = l and p = k – n,

Orthogonality with respect to scale at  will be
proved below.
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Proof that  forms a Riesz basis as in Lemma 1.
Let there exist positive constants  and 
( ) in  such that

(47)

for all  Consequently,

Let for some  . Then

In a similar way,

For , the proof is similar. For  there will
also be a restriction on scale values j ≥ jmax (jmax > 0)
under which the stability condition (47) is violated. In
a similar way, it is proved that  forms a Riesz
basis.

The validity that the sequence of embedded sub-
spaces { } forms a new MRA and 
as well as the fact that the subspaces  are an orthog-
onal complement to the base system { } and

, is proved, just like in Lemmas 2 and 3.
We show the validity of the scalability relation in

accordance with the previous proof in Lemma 2. Let
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Then  if

(49)

where  should be a 2j + 2π-periodic function.

By replacing variable w = ω/2 in (48) we obtain
 Consequently,  is a

2j + 2π-periodic function and the scalability ratio

Note that spaces  also form functions nonsta-
tionary with respect to scale .

To show that the orthogonality property of the sub-
spaces is satisfied  and  we deter-
mined the corresponding scalar product of the gener-
ating functions

By doing the same to prove the orthogonality 
we have

We show biorthogonality with respect to scale for modi-
fied wavelets  =  The case was pre-
viously considered for j = l. If  then for l < j we have

  and   
Based on the statement  we obtain

  For l > j the same conclu-
sions can be made using the second statement

This completes the proof of the theorem. Thus, it fol-
lows from the theorem that two pairs of functions ,  and

,  form a biorthogonal wavelet system (Fig. 5).
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Fig. 5. Graphs of biorthogonal frequency-modified wavelets Kravchenko :  (a),  (b),

 (c),  (d).
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This ensures fulfillment of the following necessary
conditions for the wavelet and scaling functions [13–21]:

Thus, the new modified basis functions of the
obtained wavelet system:

—form a biorthogonal system of basis functions
forming a nonstationary multiresolution signal analy-
sis in ;

—are nonstationary in relation to scale j, since
depending on j, the support of the spectrum of the
functions changes  , as does, accordingly,
the interval of the frequency subrange of the function

 encompassed by them;
—degenerate for  = const in the correspond-

ing source functions  and .

4. SCALING EQUATIONS 
OF BIORTHOGONAL 

FREQUENCY-MODIFIED WAVELETS
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MRA, the functions   

1ˆ ˆ( ) (0), ( ) (0),

( ) 0, ( ) 0.

t dt D t dt D

t dt t dt

−
ξ = ξ =

γ = γ =
 

 

�

�

2( )L �

( ),j tϕ ( )j tψ

ˆ( )D ω
ˆ( )D ω

( )j tϕ ( )j tψ

jU jU�

,j jξ ∈U ,j jγ ∈S ,j jξ ∈ U� �
JOURNAL OF COMMUNICATIONS TECHN
 are similar to the classical scaling equations
[13‒21, 35], and they can be expressed as a linear com-
bination of their scaling functions  or

For the function  we have the relation

(50)

The scalar product under the sum sign will be equal to
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Thus,

(54)

(55)

Let us construct the scaling relations that the modified
wavelet functions  and  must satisfy. For 
we have

(56)

As a result of calculating the filter coefficients, we
obtain

Now we rewrite (56) as
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After the Fourier transform, this relation takes
the form
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Similarly, for  we obtain
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In the frequency domain, this relation takes the form
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biorthogonal frequency functions

(61)

is fully confirmed by the condition for the orthonor-
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According to the statements of Lemma 2 and The-
orem 3 on embedded subspaces

other scaling relationships can be obtained. Because
   there is a 2j + 2π-peri-

odic function  such that

(63)

To determine  we use the equation

Here the product of the first two terms should form a
2j + 2π-periodic function. For this, we introduce a
2j + 2π-periodic continuation of the function 
with a gap  on  (when
Kravchenko wavelets are used).

Then,
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Here  is a 2π-periodic function determined
by the equality
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shift in n , we have

(67)

Based on (66), the formula for calculating  will be
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It follows that

(70)
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Then, the scaling relation with the filter coeffi-
cients can be represented as
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Theorem 3, the condition of embedded subspaces
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where 2j + 2π-periodic function  which is
determined as follows:

(81)

After the inverse Fourier transform, the scaling rela-
tion (80) in the time domain can be represented as
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We use the Parseval’s identity and  scaling relations
obtained above:

The resulting equality takes place only when

This equality holds for an arbitrary value of the scale
j < jmax.

Another new complex of scaling equations can be
obtained from the constructed biorthogonal system of
functions if the formula for dual bases (45) is trans-
formed using relation (52)

Here  and  are 2j + 2π-peri-
odic functions and their product is also a 2j + 2π-peri-
odic function. Hence follows the validity of the scaling
equation in the frequency domain for  and

:
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Rewriting relation (46) as  = ,
we similarly construct new scaling equations for the
wavelet functions  and 
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Thus,

where  and  are 2j + 1π-periodic functions.
We transform the dual bases of the scaling function and
the wavelet on the right-hand side of this expression

Then,

and the product of the first two terms on the right-
hand side is still a 2j + 2π-periodic function, which
proves  and 

Similarly, if  and 
then according to the hypothesis of Lemma 3
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and  are 2j + 1π-periodic functions.
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The filter coefficients for  can obtained
this way:

Then scaling equation (91) is written as

(100)

We introduce the notation of the filter coefficients
for (100), which are a convolution of known numeri-
cal sequences
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we obtain
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where
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In the time domain (111) takes the form
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The filter coefficients  

  have the following prop-
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 and  satisfy the equality
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Fulfillment of this equality is easily shown by directly
substituting relations (92) and (94) in (121).
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KRAVCHENKO WAVELETS
As shown earlier, the solution to convolution inte-

gral equation (1) involves estimation of the useful sig-
nal  from an observed signal  based on the reg-
ularized spectrum of the solution [1–7]
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Using the convolution integral equation in the fre-
quency domain  we obtain
from (122) the estimate  +

 If  then the estimate of the
useful signal has the form of an inverse filter. In the
absence of noise solution (122) makes it possible to
accurately reconstruct the signal  distorted by the
impulse response  of the linear stationary system.
In the presence of noise, it is infinitely amplified at
frequencies at which  which necessitates
mathematical approaches to effectively suppress
noise, which include wavelet filtering [13–21].

According to (22), the estimate of the useful signal
 is thus determined:

where  are the initial scaling functions
selected from Kravchenko orthonormal wavelet sys-
tems;  =  are the coefficients of
expansion of x(t) over the scaling functions

Thus, the solution to convolution integral equa-
tion (1) with respect to the function  reduces to
finding an unknown sequence of expansion coefficients
{ : } [29, 36–41]. Let us represent (22) in the
frequency domain
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obtain
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Fig. 6. Classical schemes of wavelet expansion (a) and reconstruction (b) of signal f(t).
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Thus, the estimate of the useful signal  will be
determined by the following expansion over the basis

(127)

The coefficients to be determined { : } are
found based on the existence of a biorthogonal system
of functions 

(128)

Here, the estimate of the approximate solution to con-
volution integral equation (1) in the form of (127) is
reduced to determining the coefficients (128). Based
on the fact that the proposed and substantiated
biorthogonal system of wavelet functions  
and  ,  generates two MRA chains,
any function from  can be represented as an
orthogonal expansion over the bases of subspaces of a
lower scale ,  so that  Then to
create computational algorithms for estimating the
useful signal we search for  in the form of an
expansion

(129)

which describes the DWT of the classical MRA by
wavelets with a compact support in the frequency
domain, in particular, Kravchenko wavelets [25–28].
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In the frequency domain (129) has the form

(130)

Coefficients { : } are the result of DWT
 when expanded to some scale j0 so that  is

represented as the sum of a rough approximation
 and set of details 

(131)
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According to the MRA concept, the coefficients of the
wavelet expansion can be obtained recursively with a
rougher approximation. Indeed, let some signal f(t) be
given by samplings at time instants  
Then, by multiplying the scalar scaling equations

 =   = 
left and right on  for an arbitrary scale j it is possi-
ble to obtain recursive formulas for calculating the
wavelet expansion coefficients from the more accurate
scale j + 1 to a rougher scale j [13–21]
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Graphically the wavelet expansion algorithm f(t) can
be represented as a diagram (Fig. 6a). This algorithm
is realized via a multistage serial connection of filter
blocks providing fast DWT calculations.
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The initial values of the coefficients  determined

by formulas  
at this value of scale j, in which within the spectral
range of the signal  function  remains almost
constant, i.e. such that the wavelet approximation suf-
ficiently accurately reflects the signal f(t). Such a cal-
culation is labor-consuming and may not provide the
necessary calculation accuracy. Since the signal f(t) is
practically given by its values, at a large scale j, the
coefficients  can be set equal to the sam-
plings of the function:

It follows that when choosing the Kravchenko wavelet
system 

Therefore, fast DWT calculation makes it possible
to represent the estimate of approximate solution (1)
in discrete form as a sequence of coefficients

  over which  is
expanded in (129).

As shown in (122), the estimate of the useful signal
 determined by processing the observed signal y(t)

by a filter with a frequency response  corre-
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over the basis ,  at the finest scale J. Simi-
larly we obtain the expansion  in DWT form, mul-
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mined  the following expansion over bases
 :

(137)

where  are the coeffi-
cients of expansion of the observed signal  over fre-
quency-modified biorthogonal wavelets 

The proposed and substantiated biorthogonal sys-
tem of functions ,  and , ,

 generates the MRA; therefore, for the effective
solution of problem (1) on estimating the useful signal

 distorted by the impulse response , it is nec-
essary to develop an algorithm for fast calculation of
the wavelet coefficients { , : }
based on the previously obtained scaling equations (51),
(54), (57), (59), (67), (72), (79), (82), (103), (106),
(109) , (113), as well as the scaling and wavelet filter
coefficients , , , , , , , ,

, . Then, effective noise suppression is per-
formed and its infinite amplification is compensated
using mathematical approaches to process the wavelet
coefficients [13–21, 42, 43].

The developed frequency-modified biorthogonal
wavelets make it possible to obtain recursive algo-
rithms for calculating the DWT coefficients taking
into account the localization and compensation of the
time–frequency singularities of the observed signal
y(t), frequency response function , or filter with
the frequency response  due to the existence of
scaling equations (51), (54), (57), (59), (67), (72),
(79), (82), (103), (106), (109), (113). Scaling equa-
tions (103), (106), (109), (113) allow transitions during
wavelet expansion of the observed signal y(t) from the
basis  to the bases ,  or from the
basis  to the bases ,  (the next level
of expansion is performed along the biorthogonal
basis) using single DWT in the necessary frequency
ranges, where the properties of the wavelet bases

,  or ,  allow better approxima-
tion of the signal y(t). It follows that in a unified DWT
algorithm, it becomes possible to optimize the process
of obtaining wavelet expansion coefficients for further
processing in order to efficiently recover the signal
x(t), suppress noise, and compensate for its infinite
amplification. For subspace scaling functions  and
corresponding subspace wavelet functions , the
scaling relations (51), (57), (67), (72), (106), (113)
hold, and for subspaces  and , the scaling rela-
tions (54), (59), (79), (82), (103), (109).
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Expansion coefficients  in (137)
for an arbitrary value of the scale j are determined by
the formulas

(138)

(139)

We obtain recursive algorithms for calculating these
coefficients by substituting in (138), (139) instead of

 and  scaling relations (54), (59), (79),
(82), (103), (109). Using (54), (59) we obtain

(140)

(141)

From scaling equations (51), (57), (67), (72), (79),
(82), (103), (106), (109), (113) it also follows that
other recursive calculation algorithms are possible as
the coefficients of expansion  of the
observed signal y(t) over basis functions  
and coefficients of expansion y(t) over functions
biorthogonal to these bases  

We introduce the notation for the coefficients of
expansion of the observed signal y(t) for basis func-
tions ,  at an arbitrary scale j

(142)

(143)

and for the coefficients of expansion of the observed
signal y(t) on the original wavelet bases , 

(144)

(145)

From (79), (82) follow
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(147)

Using (103), (109), we have

(148)

(149)

The recursive algorithm for calculating the coeffi-
cients of expansion  of the observed
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signal y(t) over the basis functions   seems
similar to the above cases

(150)

(151)

(152)

(153)

(154)

(155)

As in the case of the classical MRA, the obtained
recursive algorithms for calculating the coefficients

 or  require that the
corresponding initial values of the expansion coeffi-
cients  or  be known at the finest scale J. To cal-

culate the initial coefficients  from the
known samplings of the observed signal y(t), we sub-
stitute scaling relation (79) in (138)

Hence, it follows that when choosing the Kravchenko
wavelet system, we obtain

(156)

Similarly, according to (82), (139), we write

Hence, when choosing the Kravchenko wavelet sys-
tem, we have

(157)

The initial coefficients  are calculated
similarly from known samplings of the observed signal
y(t) using (67) and (142), (72) and (143)
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Fig. 7. Schemes of expansion (a) of observed signal y(t) and subsequent reconstruction (b) of useful signal  using basis of
frequency-modified wavelet functions.
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Thus, using formulas (140), (141), (146)–(159) we can
obtain different variants of the recursive algorithm for
expansion of the observed signal y(t) over its samplings
from a finer resolution J to a rough resolution j0. To
calculate each subsequent coefficient from the previ-
ous ones with a large scale characterizing a wider-band
process, it is better to use the basis functions and their
scaling and wavelet filters in (140), (141), (146)–(159),
which take into account and compensate for the fre-
quency–time singularities of the observed signal y(t)
and frequency functions  in the corre-
sponding range. Figure 7a shows a diagram of one
possible algorithm for wavelet expansion of the
observed signal y(t).

In contrast to the classical wavelet expansion
scheme [13–21] the samplings of the observed signal
y(t) at the first stage are processed by low- and high-
pass filters , . The filters in subsequent pro-
cessing steps do not change.

Next, we obtain a recursive algorithm for recon-
structing the approximating coefficients characteriz-
ing the low-frequency signal component with a large
scale from the wavelet expansion coefficients of a
smaller scale (one IDWT level). Then, given that

, the scaling function , 
can be represented as the sum

(160)

Multiplying (160) scalarly on the left and right by y(t),
we obtain
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which corresponds to the following representation of
the expansion coefficients :

(161)

Thus, using formula (161), a recursive algorithm
for reconstructing the estimate is obtained  from
to the wavelet expansion coefficients from a rough to
exact resolution using the filters of the original wavelet
bases  and . The scheme for reconstructing the
samplings of the estimate  does not differ from
the classical MRA scheme (see Fig. 7b).

Due to the proposed and substantiated construc-
tive approach for obtaining frequency-modified wave-
let bases, the scheme for expansion of the observed
signal y(t) and reconstruction of the wavelet expansion
coefficients of the estimate  is not the only one. In
the scheme for expansion of the observed signal y(t),
other recursive formulas (148)–(159) can be used.
Based on the resulting wavelet expansion coefficients
the estimate should be reconstructed .

For subspaces  and  scaling functions
 and ,  the orthogonal expan-

sions  
 are valid. Then, scaling functions

, ,  can be represented as the sums
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Fig. 8. Generalized scheme realizing multiresolution algorithm for reconstructing estimate of useful signal .
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from which follow the formulas for the expansion
coefficients  and :

(165)
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Therefore, using the recursive relations (161) and
(165) it is possible to recover the coefficients of expan-
sion of a larger scale from the coefficients of expansion
of the same basis of a smaller scale, and using the rela-
tions (166) and (167), the coefficients of expansion of
a larger scale from the coefficients of expansion of a
biorthogonal basis of a smaller scale. In addition,
mixed recursive relations are possible, where the coef-
ficients of expansion of a larger scale are obtained
from the coefficients of expansion of the scaling func-
tions of the same or biorthogonal wavelet system and
the wavelet functions of the biorthogonal or the same
wavelet system at a smaller scale. Indeed, if we use
(160), and then (45), (46) and (92), (96), then in the
time domain we obtain

(168)

(169)

Similarly, from (163) with (45) (46) and (94), (98) in
the time domain we have
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Then, mixed recursive reconstruction formulas for
approximating expansion coefficients   have
the following form:
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(173)

(174)

(175)

Thus, recursive formulas are obtained for one level
of DWT and IDWT, which make it possible to con-
struct f lexible computational schemes for multiresolu-
tion approximation of the solution to convolution
integral equation (1) taking into account the time–fre-
quency singularities of the observed signal y(t), fre-
quency response function , or filter with a fre-
quency response . Figure 8 shows the generalized
scheme realizing a multiresolution algorithm for
reconstructing the estimate of the useful signal .

The useful signal x(t) initially distorted by the
impulse response λ(t) followed by noise n(t) in the
form of time samplings yn = y(tn) is subjected to wave-

let expansion with a low-pass filter  (or )
and high-pass filter  (or ). As a result the
approximating wavelet expansion coefficients

 (or ) and detailed wavelet expan-
sion coefficients  (or ) of scale J
are obtained. Next, each of the approximating coeffi-
cients of the wavelet expansion  (or

) for  must be processed by a

low-pass filter  (or , or ) and high-pass

filter  (or , or ). Thus, a discrete
sequence of wavelet expansion coefficients 

 is formed. The detailed coefficients
 are subsequently subjected to

threshold processing. After that, the IFT is performed
with a low-pass filter  (or , or ) and

high-pass filter  (or , or ). In this case,
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the wavelet reconstruction scheme should yield a solu-
tion to integral equation (1).

Estimation of the useful signal  with a multireso-
lution algorithm using the new biorthogonal fre-
quency-modified wavelets is done in several stages.

1. Choice of the frequency-modifying function
. At this stage to select the frequency-modifying

function  a priori information about the useful
and observed signals , , impulse response λ (t),
and noise parameters n(t) is taken into account.

In practice, to suppress infinite noise amplifica-
tion, a filter is used that regularizes amplification at
high frequencies (3), which can be used to construct
the function  in the form  Sup-
pression of infinite noise amplification can also be
achieved by applying a window function w(ω), which
includes the scaling function , which at the finest
resolution J must satisfy the following requirements:

—an infinite increase of the high-frequency part of
the spectrum  must be compensated by a
decrease in the high-frequency part of the scaling
function;

—the spectrum of the scaling function 
within the spectral band  should be as f lat as pos-
sible;

—the scaling function  should be smooth
enough to eliminate the Gibbs phenomenon (contin-
uously differentiable by as many times as possible).

The scaling functions from Kravchenko wavelet
systems possess such properties [25–28].

Additionally, the frequency response of the system
can be corrected. For this, function  must be
multiplied by a suitable polynomial of ω.

2. Choice of an orthonormal wavelet basis , 
with optimal properties. To achieve greater accuracy
and computational advantages, the wavelet basis must
have a compact spectrum, a small number of filter
coefficients , and continuous differentiabil-
ity by as many times as possible. The scaling functions
from the Kravchenko wavelet systems have such prop-
erties [25–28].

From the time–frequency properties of the
selected wavelet basis, the scale values  are
determined at which DWT should be performed.

3. Obtaining a biorthogonal frequency-modified
wavelet system  , , . Initially
from the selected orthonormal wavelet basis ,

 and modifying function  functions ,
 should be obtained by formulas (27), (28). Next

the function  from formula (44) is introduced,

�rx
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with the use of which biorthogonal wavelet bases
,  are constructed by (45), (46). Addition-

ally, the modifying function  may be subjected to
frequency correction.

4. Calculation of the discrete filters of the new
biorthogonal frequency-modified wavelet system. To
conduct forward DWT of the observed signal y(t) and
obtain an estimate of the useful signal  using
IDWT, the known discrete filters  of the
orthonormal wavelet basis ,  are supplemented
with calculation of the following filters:

—using formulas (68), (73), (78), (83), the filter
coefficients ,  and ,  are
calculated, which determine the first level of DWT;

—using formulas (101), (105), (108), (112) the filter
coefficients ,  and ,  are calcu-

lated, which along with  can be used in calcu-
lating subsequent levels of DWT and in the IDWT. It
should be noted that the coefficients of these filters do
not require IFT calculation for each resolution. They
are calculated by discrete convolution of the known
filter coefficients  with a precalculated
sequence of coefficients of a 2j + 2π-periodic function

 and its inverse function , respec-
tively, , . Moreover, the coefficients

 can be calculated from the coefficients .
Thus, the largest computational cost requires single
calculation of the filter coefficients , 
and , .

5. Obtaining the initial expansion coefficients of the
observed signal y(t). At the first stage of expansion of
the observed signal y(t), the coefficients

 or  are calculated
using discrete filters ,  or

,  by formulas (156)–
(159). These filters were obtained in the frequency
domain by formulas (66), (71), (76), (81) and take into
account the singularities of the modifying function

, which can increase significantly in the high-fre-
quency region. Moreover, it follows from (66), (71),
(76), (81) that frequency filters  can pro-
vide an increase in the frequency components of the
processed signal for  (in the frequency band
of the observed signal ), if these singularities are
not sufficiently compensated by the appropriate
choice of . In particular, the high-frequency
component of the signal containing the main noise
can be significantly increased. Filters ,
conversely, do not amplify such frequency compo-
nents of the processed signal and can serve as an alter-
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Fig. 9. Functions of hard (a) and soft (b) threshold pro-
cessing.

(a) (b)
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xT
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x

native approach for calculating the expansion coeffi-
cients of the observed signal y(t) at the first stage of
DWT. Subsequent stages are carried out with filters
with a lower passband, where in the high-frequency
part, the increase in the modifying function , as a
rule, is significantly less. Therefore, subsequent DWT
stages are most often less critical toward the choice of
the expansion filters.

6. DWT of the observed signal y(t). During DWT
the optimal scheme for wavelet expansion of the
observed signal is selected y(t) using formulas (140),
(141), (148)–(151), (154), (155) for the selected scale
values  taking into account the time–fre-
quency singularities of the observed signal y(t), fre-
quency response function , or filter with fre-
quency response . Excess DWT is also used
(wavelet coefficients are not discarded as a result of
decimation), for which better noise reduction can be
achieved.

7. Threshold processing of the wavelet coefficients.
Cleaning up the observed signal from noise using
wavelets can be performed by threshold processing of
the wavelet coefficients [13–21, 42, 43]. The advan-
tage of nonlinear methods for threshold processing of
the wavelet coefficients is the speed of the algorithms
for constructing the estimates and the possibility of
better adaptation to functions with varying degrees of
regularity in different areas. In addition to the noise
removal problem, threshold processing makes it possi-
ble to solve the signal compression problem. In thresh-
old processing the level of the detailing coefficients is
limited by the threshold function . Instead of
argument x in the function  the detailing coeffi-
cients for each expansion level are substituted by j
( , ).

A hard or soft threshold function with a threshold
T is commonly used. The hard threshold processing
function is described by the following expression:

ˆ( )D ω
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JOURNAL OF COMMUNICATIONS TECHN
Obviously, the hard threshold processing function has
a gap. This can lead to undesirable processing singu-
larities of a sufficiently smooth signal function. Soft
threshold processing is set by a continuous threshold
function

Figure 9 shows the hard and soft threshold processing
functions.

Therefore, with this approach, the most effective
noise removal will be achieved when the signal energy
as a result of DWT is concentrated in the minimum
number of coefficients above the threshold and the
noise energy is distributed in the maximum number of
coefficients below the threshold. This occurs when the
selected wavelet basis is well correlated with the signal.
For every scale j, a threshold Tj is selected, which in
accordance with [42, 43] is determined as

This threshold is called “universal,” since it does not
depend on the observed data (it depends only on the
noise variance). When choosing a threshold TU, the
closeness of the root-mean-square risk to the mini-
mum is ensured [42–45], and almost all noise is
removed from the signal. The noise variance  can be
calculated using the calibration procedure of the signal
recording device. However, often the variance  is
unknown and instead of its exact value, it is necessary
to use some estimate . The variance estimate can be
obtained from the observed yn = y(tn) by calculating
the median Mb wavelet coefficients  at the finest
scale J since, by virtue of (157) (or (159)), these coef-
ficients actually contain only noise 
In addition, selective variance can be used as the vari-
ance . Selective variance is the most widely used
estimate for  and in the absence of rejects, it is most
preferable. Then, if the signal yn has a length N of the
N/2 wavelet coefficients  of the smallest scale

j = J−1, then  is estimated as follows:

8. Reconstruction of the estimate of the useful signal
 using IDWT. During IDWT, the discrete values

of the estimate of the signal  are recon-
structed from the wavelet expansion coefficients of the
observed signal yn = y(tn) that have undergone thresh-
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old processing. Since for the given approximating and
detailed coefficients at each scale j ( ) it is
possible to reconstruct the approximating coefficients

 or  depending on the filters in formulas
(161), (165)–(167), (172)–(175), the next stage of
IDWT can be carried out taking into account the
time–frequency singularities of the observed signal
y(t), frequency response function , or filter with
frequency response . At the last stage of recon-
struction, formulas should be applied that ensure
reconstruction of .

9. Visualization and interpretation of the results.
Estimating the error in solving the problem. The
obtained result is visualized and subjected to further
processing (statistical, comparative, empirical, etc.) in
order to more fully study the object and evaluate the
error in solving the problem.

CONCLUSIONS

We have validated the use of wavelet approaches in
reconstructing the useful signal in the case of represent-
ing the measurement process as a convolution model.
To realize the algorithm for solving problem (1), it is
proposed to use Kravchenko orthogonal wavelets with
a finite spectrum [25–28]. It is demonstrated that it is
possible to modify wavelets with a compact support in
the frequency domain so that it becomes possible to
estimate the useful signal  from the observed sig-
nal  using fast DWT-based algorithms. A method
for obtaining new biorthogonal frequency-modified
wavelets that form two MRA chains based on a modi-
fying function with a frequency response  is pro-
posed and validated. The function  allows the
construction of wavelets taking into account stabiliza-
tion of the solution to convolution integral equation (1)
and effective noise suppression. Several types of scal-
ing equations and formulas for calculating the wavelet
coefficients for these equations are obtained. The pro-
posed biorthogonal frequency-modified wavelets are
nonstationary with respect to scale; i.e., they are not
the result of a shift and scaling of one scaling and
wavelet functions. However, they form an effective
multiresolution algorithm for approximating the solu-
tion to convolution integral equation (1). The
obtained wavelet systems make it possible for DWT
and IDWT to optimize the process of obtaining and
reconstructing wavelet coefficients to compensate
time–frequency singularities of the observed signal
y(t), frequency response function , or filter with
frequency response . Several variants of DWT
and IDWT are proposed based on new biorthogonal
frequency-modified wavelets, which can be used in
various physical applications.
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