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Abstract—The method of integral equations is suggested for calculating irregular twisted guided structures.
The method is based on the Lorentz integral relationship and makes it possible to solve internal diffraction
problems for waveguides, whose screening surface is described by analytical functions.
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INTRODUCTION
This work is devoted to the description of the

numerical–analytical method for calculating the
transmission characteristics of a twisted waveguide
having a rectangular cross-section. This method is a
variant of the method of integral equations, which is
formulated in works [1, 2] on the basis of the integral
form of the Lorentz lemma. The ideology of the
method is stated in work [3] for the first time.

The waveguide twisted joint is an irregular section
of a screened waveguiding structure having a rectangu-
lar cross-section. In this structure, only the position of
the cross-section contour changes depending on the
longitudinal coordinate rather than its shape and
dimensions. The contour position is determined by
angle Φ(z) of its rotation with respect to the similar
contour of the twisted joint beginning. This angle
depends on longitudinal coordinate z. Irregular sec-
tions of a microwave section that have the type of a
twisted joint are most often applied in antenna devices
[4] for the rotation of a polarization plane.

The problem of diffraction by a waveguide twisted
joint can be solved using such widespread and electro-
dynamically justified methods as the method of cross-
sections [5, 6] and the partial domain method (PDM)
[7, 8]. The first method is used for calculating the
transmission characteristics of irregular guiding struc-
tures having parameters that slowly change along the
longitudinal coordinate [5]. Therefore, its application
for calculating waveguide twisted joints that are short
with respect to the longitudinal coordinate and have
a respectively large value of the rotation angle of the
polarization plane (of compact twisted joints) leads
to obtaining results with a considerable error. The
second method (PDM) can be applied to calculating

twisted joints with arbitrary values of lengths and rota-
tion angles of the polarization plane. However, this
method calls for large expenses of the computer time
and a cumbersome procedure of the algebraization of
a calculating algorithm.

The numerical–analytical method suggested in
this work for calculating the transmission characteris-
tics of longitudinally–azimuthally irregular wave-
guiding structures has advantages over the methods
indicated above both in the counting rate and in the
sufficiently simple procedure of the problem alge-
braization.

1. THE METHOD OF INTEGRAL EQUATIONS 
IN THE DIFFRACTION PROBLEM 

ABOUT THE TRANSMISSION 
CHARACTERISTICS OF A WAVEGUIDE 

TWISTED JOINT HAVING 
A RECTANGULAR CROSS- SECTION

The considered guiding section is schematically
shown in Fig. 1. It is volume V bounded by the surfaces
S = S1 + S2 + S3 and 

In this volume, electromagnetic fields  and

 created by sources  and  respectively,
exist. Here, S1 and S3 are the side surfaces of the first
(region I) and second (region III) regular waveguides,
respectively; S2 is the side surface of the irregular
region of the waveguide twisted joint (region II) with
length L along longitudinal coordinate z; and  are
the cross-section planes bounding the region of the
considered guiding structure along longitudinal coor-
dinate z.
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Fig. 1. Waveguide twisted joint connecting coaxial regular rectangle screened waveguides rotated with respect to each other by the
angle of 90° around the z axis: (a) front view, (b) lateral view, and (c) overall view.
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The indicated fields and sources are connected by
the following relationship according to the Lorentz
lemma:

(1)

As fields  and  we use the solutions to the
Maxwell equations that correspond to the wave prop-
agating in the guiding structure and on surface S sat-
isfy the boundary conditions of the continuity of the
electric field tangential component and magnetic field
normal component

(2)

Sources  are auxiliary, and they are situated in the
finite region inside the guiding structure near the sur-
face z = 0. These sources create the spherical wave
field satisfying the zero boundary condition at the
points situated infinitely far from the sources. The
specificity of the formulation of the Lorentz lemma in
this case is in the fact that the lemma is written for the
fields corresponding to different boundary value prob-
lems in one and the same volume. One boundary value

( )( )

( )
⊥+

−      

= − − +





�� � � �

� � � �� � � �

�

1,2

1 2 2 1

1 2 2 1 1 2 2 1

, , ,

, , , , .

S S

e e m m

V

E H E H dS

j E j E j H j H dV

1Е
�

1Н
�

τ 0, 0.nS SE H= =
,

2
e mj
�

JOURNAL OF COMMUNICATIONS TECHN
problem is formulated for the irregular waveguide, and
the second one is formulated for the unbounded
space. This formulation of the Lorentz lemma can be
called generalized.

According to the technique suggested in work [1],
we infinitely remove sections  from the coordinate
origin (z1,2 → ±∞) and take into account that sources

 moved at z1,2 create in the open space spherical
wave field  that satisfies the conditions

at the place, where the auxiliary sources are located.
Then, we can exclude currents  from Eq. (1) and,
choosing elementary electric and magnetic dipoles as
auxiliary sources, obtain the Fredholm integral equa-
tions of the second kind

(3)

(4)

Solving integral equations (3) and (4) and using
boundary conditions (2), we determine desired fields
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 and  in the irregular guiding structure. At the
same time, there are no limitations of the waveguide
twisted joint length measured along the longitudinal
coordinate and of the value characterizing the rotation
angle of the transverse section contour of the second
regular waveguide relative to the same contour of the
first waveguide.

Consider the guiding structure schematically
shown in Fig. 1. The transverse dimensions of the first
(region I) and second (region III) waveguides as well as
of the region of the waveguide twisted joint (region II) are
identical. The dimension of the cross-section wide
wall is a, and the dimension of the narrow wall is b. Let
one of the eigenmodes of the first waveguide be inci-
dent from the side of this waveguide. As the result of
this wave diffraction taking place in the irregular
region of the waveguide twisted joint, an infinite set of
reflected waves is excited in the first waveguide. The
reflection coefficients are  for the E waves and 
for the H waves. An infinite set of transmitted waves is
formed in the second waveguide. The transmission
coefficients are  for the E waves and  for the H
waves.

The longitudinal components of the electric and
magnetic fields in region I (–∞ < z ≤ 0) are written as
follows:

(5)

(6)

where  is the transverse wave number of rectangu-
lar waveguide I and  is the longitudinal wave num-
ber of rectangular waveguide I.

The remaining components of the electric and
magnetic fields of the electromagnetic waves are
expressed (see, for example, [9]) from the Maxwell
equations using components (5) and (6)
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where ε and  are the medium permittivity and per-
meability, respectively.

We obtain the expressions for the transverse com-
ponents of field intensities of the electric type waves
from Eqs. (7)

(8)

The transverse components of the fields of the
magnetic type waves are expressed in terms of the lon-
gitudinal components as

(9)

All the components of the electromagnetic fields of
the H- and Е-type waves in waveguide I can be written
using relationships (5), (6), (8), and (9).

The connection of wave numbers in region I
(‒∞ < z ≤ 0) looks as follows:

(10)

The transverse wave numbers in region I are deter-
mined as

(11)

Since the transverse dimensions of regions I, II,
and III remain invariant, relationships (10) and (11)
are valid for the whole considered guiding structure

For the solution of the considered diffraction prob-
lem it is necessary to have the expressions for the field
components of the E- and H-type waves on the surface
of the irregular region and on the surface of the second
regular screened rectangular waveguide. An auxiliary
regular comparison waveguide (CW) [5] is matched
with each transverse section of the considered guiding
structure in order to write the field components on the
surface and find the values of the surface integrals over
the irregular region of this structure. The CW has the
same section and distribution of the filling medium
parameters. The desired field is sought in the form of
the superposition of the CW proper wave fields. The
fields on the CW end boundaries are joined indirectly
using integral equations (3) and (4) [2] rather than in
the explicit form using the boundary conditions. The
amplitude coefficients of electromagnetic waves are
determined as solutions of an inhomogeneous system
of linear algebraic equations (SLAEs).
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Fig. 2. Dependence of the rotation angle of the polarization plane of the waveguide twisted joint on the z coordinate: (a) Φ(z)
dependence and (b) stepwise approximation of the Φ(z) dependence.
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Fig. 3. Relative orientation of the BCS and LCSq in the investigated waveguide structure.
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Thus, we practically succeed in representing the
irregular region of the twisted joint as the cascade con-
nection of finite number Q of guiding structure sec-
tions in the form of regular CWs having dimension h
along longitudinal coordinate z. The dimensions of
the wide and narrow walls in the transverse section of
each such waveguide are a and b, respectively. We call
Cartesian system (x, y, z) the base coordinate system
(BCS). Every CW having the dimensions a × b × h is
turned around BCS axis z through angle Φ = Φ(z)
depending on the value of longitudinal coordinate z.
Figure 2a shows dependence Φ(z) in irregular region II
(0 < z < L ) and in the region of the second regular
waveguide (L ≤ z < ∞). Figure 2b shows the stepwise
approximation of the linear dependence of Φ(z). This
approximation corresponds to the representation of
the irregular region in the form of the cascade of CWs.
Index q in the figure corresponds to the ordinal num-
ber of a regular CW, Q is the number of the indicated
CWs in the twisted joint, and h is the dimension of the
step of the twisted joint discretization. The CW length
along the longitudinal coordinate is z. Angle Γ is the
rotation angle of the contour of the transverse section
of the second regular waveguide with respect to the
JOURNAL OF COMMUNICATIONS TECHN
same contour of the first waveguide. When z ≥ L, this
angle does not depend on longitudinal coordinate z.
Therefore, in Figs. 2a and 2b, dependence Φ(z) for z ≥ L
is a straight line parallel to axis z.

Figure 3 shows the mutual orientation of the first
regular waveguide and the qth CW. The Cartesian

coordinate system  shown in the figure is

called the local coordinate system (LCS) of the
qth CW. Below, it is called the LCSq. This system is
inflexibly connected with the surface of the qth CW.
Namely, the two LCSq axes (the axes  and ) lie in
the CW transverse section as it is shown in the figure.
The direction of the  axis coincides with the vector of
the phase velocity (coinciding with the z axis) of the
electromagnetic wave propagating in the waveguide
twisted joint. It is seen from the figure that LCSq

 in the irregular region rotates with respect

to BCS (x, y, z) around the z axis through the same
angle as the contour of the considered transverse sec-
tion in the region of the twisted joint.
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Fig. 4. Relative orientation: (a) of the BCS and spherical coordinate system, in which the field of the auxiliary source is described,

and (b) of the BCS and auxiliary coordinate system .
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To determine the connection between the BCS and
LCSq, it is necessary to use the coordinate transforma-
tion formulas that have the form [10]

(12)

Using relationships (5), (6), (8), (9), and (12), we can
write all the field components of the H- and Е-type
waves in the irregular region of the waveguide twisted
joint. We obtain the expressions of the components of
the electromagnetic wave fields in the region of the
second regular waveguide by replacing Фq by Г in for-
mula (12) and using the indicated relationships.

The fields of auxiliary sources are present in initial
integral equations (3) and (4). The elementary electric
and magnetic dipoles, which are longitudinally ori-
ented, are chosen as these sources. The components of
the electromagnetic field created by the magnetic
dipole are represented in the following form in the
spherical coordinate system:
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The components of the field created by the electric
dipole can be represented in the form

Here,  and i is the auxiliary source number
[9]. Formulas connecting spherical coordinate system

 in which the components of the auxiliary
source fields are described, and BCS (x, y, z), in which
the components of the fields of the considered guiding
structure (Fig. 4a and Fig. 4b) are written, have
the form
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When the auxiliary sources are situated along the
longitudinal direction, the components of the fields
created by them have the following form in Cartesian
coordinate system (x, y, z) [11]:

The left-hand side of Eq. (4), in which the auxiliary
field created by the magnetic dipole is present, is writ-
ten in the form

where S1 is the side surface of regular region I (–∞ <
z ≤ 0), S2 is the side surface of irregular region II (0 <
z < L), and S3 is the side surface of regular region III
(L ≤ z < ∞).

The right-hand side of this equation has the form

The left-hand side of Eq. (3), in which the auxiliary field created by the electric dipole is present, is written
in the form

The right-hand side of Eq. (3) has the form
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Fig. 5. Dependences of the absolute values of the (solid lines) reflection ( ) and (dashed lines) transmission ( ) coefficients
of the H10 wave on the normalized frequency for different values of the length of the waveguide twisted joint in the single-mode
frequency range.
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Next, we write integral equations (3) and (4) in 4N
points (where N is the approximation number), in
which the elementary electric and magnetic dipoles
oriented along the longitudinal coordinate are located.
We find the numerical values of the surface integrals
by substituting the field components into the indicated
integral equations. As the result, we obtain the inho-
mogeneous system of 4N linear algebraic equations.
Solving this system, we find the unknown amplitude
coefficients of the E- and H-type waves.

2. THE RESULTS OF THE CALCULATION 
OF THE TRANSMISSION CHARACTERISTICS 

OF A WAVEGUIDE TWISTED JOINT
Figure 5 shows the calculated dependences of the

absolute values of the reflection and transmission
coefficients of the fundamental wave H10 existing in
the rectangular waveguide on normalized frequency
ka for different values of length L of the waveguide
twisted joint. The angle of the rotation of the wave-
guide twisted joint is Г = 90°. The results are obtained
in the range of normalized frequencies 3.14 ≤ ka ≤
6.28, which corresponds to the single-mode regime of
the guiding structure operation in the first approxima-
tion, when one H10 wave is taken into account in the
regions of the regular waveguides and waveguide
twisted joint.

In the figure, curves 1 and 2 are, respectively, the
absolute values of the reflection and transmission
coefficients of the H10 wave, when the length of the
twisted joint is L = a, curves 3 and 4 correspond to
L = 2a, curves 5 and 6 correspond to L = 3a, curves 7
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
and 8 correspond to L = 4a, and curves 9 and 10 cor-
respond to L = 5a. It is seen from the figure that, when
L ≥ 2a, the value of the voltage standing wave ratio
(VSWR) does not exceed 1.06 in the band of normal-
ized frequencies 3.6 ≤ ka ≤ 6.28. This fact indicates
that the matching is good in the entire investigated fre-
quency range.

We find the dependences of relative errors of the
fulfillment of the energy conservation law (ECL) on
the normalized frequency for different values of length
L of the waveguide twisted joint for estimating the
accuracy of the obtained results of the numerical real-
ization of the developed algorithm. The relative error
of the ECL fulfillment is determined as

where β10 is the longitudinal wave number of the wave
H10; βmn are the longitudinal wave numbers of the
waves Hmn and Emn; and m and n are the wave indices
corresponding to the wide and narrow walls of the
guiding structure, respectively. The computational
results for the frequency dependence of the relative
error of the ECL fulfillment are shown in Fig. 6.

It is seen from the figure that the values of the rela-
tive error of the ECL fulfillment do not exceed 2.5% in
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Fig. 6. Dependences of relative errors of the ECL fulfillment for the H10 wave in the single-mode range when length L of the wave-
guide twisted joint is (a) a and (b) 3a.
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Fig. 7. Dependences of the absolute values of the (solid lines) reflection ( ) and (dashed lines) transmission ( ) coefficients
of the H10 wave on the normalized frequency for different values of the length of the waveguide twisted joint in the multimode
frequency range.

0

0.05

0.10

0.15

3.1 4.1 6.1 7.1 9.1 11.1 12.1
ka

1

5

3

0.4

0.6

0.8

1.0

10.18.15.1

2

46

|R10|, |B10|

10R 10B
the entire investigated range of normalized frequencies
with the exception of the region near the critical fre-
quency of the fundamental wave H10. We use four aux-
iliary magnetic-type sources (elementary magnetic
dipoles) for the solution of the formulated diffraction
problem. It is possible to state within the framework of
the applied approximation that the chosen position of
the auxiliary sources provides for the fulfillment of the
condition that the indicated relative error does not
exceed the ultimate permissible value equal to 5%.

In the context of this work, we calculate the trans-
mission characteristics of the waveguide twisted joint
in the wider range of normalized frequencies 3.14 ≤
ka ≤ 12.56, which corresponds to its work in the mul-
timode regime. Figure 7 shows the resulting calculated
JOURNAL OF COMMUNICATIONS TECHN
dependences of the absolute values of the reflection
and transmission coefficients for fundamental wave
H10 of the rectangular waveguide on the normalized
frequency for various values of the length of the wave-
guide twisted joint. The angle of the rotation of the
waveguide twisted joint is Г = 90°. The results of cal-
culation are obtained for the sixth approximation.

Figure 7 shows curves 1 and 2, which are the abso-
lute values of the reflection and transmission coeffi-
cients, respectively, of wave H10 for the twisted joint
length L = a; curves 3 and 4 for L = 3a; and curves 5
and 6 for L = 5a.

The curves of the absolute values of the reflection
and transmission coefficients for the H10 wave have a
OLOGY AND ELECTRONICS  Vol. 65  No. 4  2020
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Fig. 8. Dependences of the absolute values of the (solid lines) reflection ( ) and (dashed lines) transmission ( ) coeffi-
cients of the Hmn and Emn waves on the normalized frequency when the length of the waveguide twisted joint is L = 5a in the
multimode frequency range.
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complex frequency dependence in the frequency range
corresponding to the multimode regime. This depen-
dence is concerned with the characteristic properties
of the energy exchange of the H10 wave with other
waves propagating in the investigated guiding struc-
ture. Local maxima and minima in the frequency
dependences of the transmission characteristics are
observed near critical frequencies of higher-type
waves. This effect can be explained by the appearance
of the interaction between the wave indicated above
and one of the mentioned waves.

Figure 8 shows the frequency dependences of the
absolute values of the reflection and transmission
coefficients for waves H10, H20, H01, H21, E21, and H30,
when the length of the waveguide twisted joint is L = 5a.
The angle of the rotation of the wavewguide twisted
joint is Г = 90°.

It is seen from the figure that, in the frequency
range corresponding to the multimode regime of the
waveguide twisted joint operation, the diffraction of
the H10 wave also results in the excitation and propaga-
tion in the regular waveguides waves H20, H01, H21, E21,
and H30. Curves 1 and 2 in Fig. 8 are, respectively, the
absolute values of the reflection and transmission
coefficients for the wave H10, curves 3 and 4 are the
similar values for the wave H20, curves 5 and 6 are
the similar values for the wave H01, curves 7 and 8 are
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
the similar values for the wave H21, curves 9 and 10
are the similar values for the wave E21, and curves 11
and 12 are the similar values for the wave H30.

Figure 9 shows the dependences of the relative
error of the ECL fulfillment on the normalized fre-
quency in the multimode frequency range for different
values of the waveguide twisted joint length. The indi-
cated dependences are found for the purpose of esti-
mating the accuracy of the calculation results
obtained, when the developed algorithm is numeri-
cally realized. It is seen from the figure that, except for
the region near the critical frequency of the H10 wave,
the relative error of the ECL fulfillment in the entire
considered range of the normalized frequencies does
not exceed 4%. The peaks of the error of the ECL ful-
fillment are observed near the critical frequencies of
the higher-type waves.

Proceeding from the presented above frequency
dependences of the relative error of the ECL fulfill-
ment, it is possible to conclude that the condition for
keeping the indicated error from exceeding the thresh-
old value (5%) is fulfilled. The problem is solved using
the approximation N = 6, when five H-type waves and
one Е-type wave are taken into account. According to
this, twenty longitudinally oriented magnetic dipoles
and four electric dipoles are placed near the irregular
region of the guiding structure. Their coordinates are
 ELECTRONICS  Vol. 65  No. 4  2020
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Fig. 9. Dependences of relative errors of the ECL fulfillment on the normalized frequency in the multimode range when length L of
the waveguide twisted joint is (a) a and (b) 3a.
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Fig. 10. Dependences of the absolute values of the (solid lines) reflection ( ) and (dashed lines) transmission ( ) coeffi-
cients of the H10 wave on the normalized frequency for the length of the waveguide twisted joint L = 4a in the multimode fre-
quency range.
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determined using the recommendations given in
works [12, 13].

The calculation results for the transmission charac-
teristics of the waveguide twisted joint that are
obtained with the help of the developed algorithm are
compared with the results of calculation performed
with the use of the computer-aided design (CAD)
facility CST Microwave Studio. This is done in
order to confirm the reliability of the obtained
results. Figure 10 shows the calculation results for the
transmission characteristics of the considered guiding
structure, when the length of the waveguide twisted
joint is L = 4a. These results are obtained using the
proposed algorithm and CAD facility. The angle of the
rotation of the waveguide twisted joint is Г = 90°.
JOURNAL OF COMMUNICATIONS TECHN
Curves 1 and 2 in the figure are the absolute values
of the reflection and transmission coefficients,
respectively, that are obtained with the help of the
developed algorithm, and curves 3 and 4 are obtained
with the help of the CAD facility. Comparing the
transmission characteristics, we can conclude that the
results coincide qualitatively and quantitatively. The
deviation of the calculation results obtained with the
help of the CAD facility from the results obtained with
the help of the developed algorithm does not exceed
3.5%. This fact confirms the correctness of the algo-
rithm in the normalized frequency range correspond-
ing to the multimode regime of the waveguide twisted
joint work, when a finite set of higher-type waves is
taken into account.
OLOGY AND ELECTRONICS  Vol. 65  No. 4  2020
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Fig. 11. Dependences of the relative error of the ECL fulfillment on the number of the approximation used for the solution of the
problem for the waveguide twisted joint having the length L = 3a when ka is equal to (a) 7.46 and (b) 11.38.
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The convergence of the solutions to the formulated
diffraction problem is investigated in order to estimate
the calculation method suggested in this work, the
algorithm created on the basis of this method, and the
validity of the obtained results. The results of the
investigation are shown in Fig. 11. It is seen from the
figure that relative error Δ of the ECL fulfillment
decreases and converges to zero, when the approxima-
tion number grows. In this case, the difference
between the numerical values of the transmission
characteristics in the fifth and sixth approximations
does not exceed 0.2%. When the approximation num-
ber continues to grow, the numerical absolute values of
the reflection and transmission coefficients insignifi-
cantly change and simultaneously considerable
increases the SLAEs order. The performed investiga-
tion allows us to choose the working approximation
N = 6 for calculating the transmission characteristics
of the waveguide twisted joint having a rectangular
cross-section.

CONCLUSIONS

The numerical-analytical method is proposed for
the calculation of the transmission characteristics of
the longitudinally–azimuthally irregular guiding
structure in the form of a waveguide twisted joint hav-
ing a rectangular cross-section. The presented algo-
rithm is based on the method of integral equations
[1—3, 8]. Each section of the irregular region in the
considered guiding structure is matched with a com-
parison regular waveguide in order to write the field
components on the surface of the irregular waveguide
and find the values of the surface integrals entering the
initial integral equations. The desired field is sought in
the form of the superposition of the eigenmode fields
of the corresponding comparison waveguides. Match-
ing of the fields on the boundaries of the indicated
decomposition sections of the irregular region is indi-
rectly realized using integral equations (3) and (4).
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
The frequency dependences of the absolute values
of the reflection and transmission coefficients for fun-
damental wave H10 of waveguide twisted joints of vari-
ous lengths in single-mode and multimode regimes
are found with the use of the developed algorithm. The
transmission characteristics of higher-type waves are
calculated and their effect on the reflection and trans-
mission coefficients of fundamental wave H10 is inves-
tigated. The accuracy and correctness of the calcula-
tion results are confirmed by the dependences of the
relative error of the ECL fulfillment on the normalized
frequency and comparison with the results obtained
with the help of CAD facilities. The validity of the
application of the integral equation method and the
numerical–analytical algorithm based on it is substan-
tiated by the investigation of the convergence of the
calculation results depending on the number of the
approximation, in which the diffraction problem is
solved. One of the main advantages of the proposed
method is the reliability of the obtained results, which
is well controlled. The nonstandard procedure of
deriving the integral equations and the sufficient gen-
erality of application to the solution of inner boundary
value diffraction problems are typical of the method.
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