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Abstract—The article considers the two-dimensional diffraction problem of a TM-type plane electromag-
netic wave on a cylindrical silver or gold structure, the contour of the cross section of which is a square or rect-
angle. In the wavelength range  a rigorous numerical method is used calculate the
spectra of the scattering cross section and scattering patterns. The influence of losses of the medium, the geo-
metric dimensions of the structure, and the angle of incidence of a plane wave on the scattering cross section
and scattering pattern is studied. It has been shown that the real losses of gold make it impossible for multipole
resonances to exist at plate sizes substantially less than the wavelength. In the case of a silver plate, the position
of the dipole and the presence of multipole resonances depends both on the length and thickness of the plate
and on the angle of incidence of the plane wave.
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INTRODUCTION

As is known, electromagnetic wave diffraction by
noble metal nanostructures (silver, gold) in the visible
wavelength range is accompanied both by the forma-
tion of surface waves (plasmon polaritons) and exis-
tence of their resonances. Moreover, interest in study-
ing the properties of plasmon polaritons is mainly
related to the high localization of the electromagnetic
field near the surfaces of nanostructures, which allows
their use in subwavelength and near-field probing.
Thus, silver and gold nanowires are widely used as sen-
sors [1]. Note that plasmon resonances in cylindrical
nanostructures (filaments) with a circular cross sec-
tion occur in the ultraviolet. Using nanotubes, plas-
mon resonance frequencies can be shifted to the visi-
ble region [2, 3]. In [4], plasmon resonances in quartz
nanowires coated with a layer of gold with variable
thickness were studied under the assumption that the
shell boundaries are circular cylinders with displaced
centers. Various geometries of silver and quartz shells,
the cross-section contours of which are formed by cir-
cular or circular and elliptical cylinders, were consid-
ered in [5–7].

The aim of this work is to study the characteristics
of plasmon resonances in 2D silver (gold) nanostruc-
tures in the case when the cross-sectional contours of
the structure are square (rectangle) with different
aspect ratios. Among related works, we mention
[8‒11].

1. FORMULATION OF THE PROBLEM
Let us consider the two-dimensional problem of

diffraction of a plane electromagnetic linearly polarized
wave by a two-dimensional cylindrical dielectric struc-
ture (plate), the cross section of which is square
(Fig. 1a) or rectangular (Fig. 1b). A plane wave propa-
gates in the direction of a unit vector ( )
and is characterized by the following electromagnetic
field components:

(1)

The time dependence is selected as  where
 is the circular frequency,  is the wav-

enumber of the free space,  is speed of light in vac-
uum,  is the wavelength, and  is the wave
impedance of the vacuum.

For the structure shown in Fig. 1b , the contour of
the cross section is described by the formula

(2)

where  (e.g., for ) and  If in (2) we
take  then formula (2) will describe the bound-
ary of the structure (dielectric plate) with the contour
of the square cross section (see Fig. 1a). We consider
the medium of the structure to be silver (or gold). The
frequency dependence of the relative dielectric per-
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Fig. 1. Problem geometry for square (a) and rectangular (b)
plate.
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Fig. 2. Dependence of real (1) and imaginary (2) parts of
relative dielectric permittivity of silver (a) and gold (b) on
wavelength.
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λ, nm
mittivity  ≡  of silver
(or gold ) was calculated by interpolating the exper-
imental data of [12] using cubic splines. Figure 2a shows
the dependence of the real and imaginary parts of the
relative dielectric permittivity of silver. Similar depen-
dences for gold are shown in Fig. 2b.

The spatial distribution of the dielectric permittiv-
ity for the structures shown in Fig. 1 has the form

(3)

It is more convenient to study the formulated dif-
fraction problem using the  magnetic field compo-
nent , since the boundary value
problem for the function  is scalar. The total
field  i.e., the superposition of the incident and
scattered fields in a piecewise constant medium (3), sat-
isfies the Helmholtz equation

(4)
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The electric field components can be expressed by the
function 

(5)

At the boundaries of the structure there must be con-

tinuous values  and  where  is the derivative

in the direction of the normal to the interface.
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Fig. 3. Distribution of absolute values of residual of
boundary conditions along contour of silver plate for a =
50 and b = 5 nm.
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Fig. 4. Dependence of normalized scattering cross section
on wavelength at angle of incidence  of a plane wave
for a silver plate with parameters of a = 50 nm and b =
50 (1), 25 (2), 12.5, (3), 6.25 (4), and 5 nm (5).
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As already noted, the total field outside the plate
consists of the incident ( ) and scattered ( ) fields.
The incident field is given by the function

(6)
The scattered field in a cylindrical coordinate sys-

tem ( ), where  and  in the far
field ( ), must satisfy the radiation condition

(7)

where  is the scattering pattern.
Total scattering cross section  is determined by

the formula

(8)

2. NUMERICAL RESULTS
The formulated problem was numerically solved by

the modified discrete sources method [13, 14]. Here,
the accuracy in solving the problem was controlled by
calculation of the residual  of the boundary condi-
tions in the linear norm at points at the middle
between points where the boundary conditions are
satisfied exactly (at such points, the boundary condi-
tions are the most poorly met [13]). In all calculations
below, the maximum residual of the boundary condi-
tions does not exceed  Figure 3 shows an
example of a typical distribution of the residual 
along the contour (2) of a silver plate (  is the number
of the point on the contour) (the parameters of the

0U sU

= − ϕ − ϕ0
0 0exp( cos sin ).U ikx iky

ϕ,r = ϕcosx r = ϕsin ,y r
→ ∞kr

( )π= Φ ϕ − +
π

s 2( ) exp ,
4

U ikr i
kr

Φ ϕ( )
σS

π

σ = Φ ϕ ϕ
π 

2
2

S
0

2 ( ) .d
k

δ

−δ < 310 .
δ( )n

n

JOURNAL OF COMMUNICATIONS TECHN
contour (2) were considered to be as follows:
 ).

Let us first consider the behavior of the normalized
scattering cross section  depending on the wave-
length  (in all results presented below  varies within

 for silver and
 for gold) for the case of a silver

plate at various angles of incidence  of the plane
wave.

Figure 4 presents the results of calculating the nor-
malized scattering cross section  for an angle of
incidence  i.e., when the plane wave hits (“illu-
minates”) a narrow part of the plate and propagates
along its wide part. In this case, curve 1 corresponds to
a square plate, and curves 2–5, to rectangular plate
with  and b = 25, 125, 6.25, and 5 nm. From
the figure it follows that in all cases, curves 1–5 con-
tain two maxima, the amplitude ratio of which changes
with decreasing plate thickness. In this case, the maxima
lie in the wavelength range  and
hardly change their position at all.

To understand the origin of these maxima, Fig. 5
shows the results of calculating the normalized scatter-
ing cross section  for   and
various values of the imaginary part of the relative
dielectric permittivity of silver, which determine the
losses of the medium. It follows from this figure that
for small values of the losses of the medium
( ), both dipole and multipole reso-
nances can be observed. In addition, it can be seen that
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Fig. 5. Dependence of normalized scattering cross section
on wavelength for    and var-
ious losses for silver:  (1), 0.1 Im (εs) (2) and
0.001 Im (εs) (3).
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Fig. 6. Dependence of normalized scattering cross section
on wavelength at angles of incidence  (a) and

 (b) of plane wave for silver plate with parameters
of a = 50 nm and b = 50 (1), 25 (2), 12.5 (3), 6.25 (4), and
5 nm (5).
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for real values  such a silver plate has the first
(right) maximum of the scattering cross section 
corresponds to a dipole resonance, and the second
(left) maximum is the result of the merger of several
multipole resonances.

We note in passing that application of the tech-
nique and the results of [14] raise serious doubts for
the case of thin nanoplates made from precious met-
als. On the one hand, this is because the plate thick-
ness  should not be less than  since for a
plate thickness of , it is necessary to take
into account the effects associated with spatial disper-
sion, and for , it is necessary to apply quan-
tum mechanics to describe the interaction of an elec-
tromagnetic wave with the plate [1]. On the other
hand, for , a fairly strong change in the
field across the plate occurs, which is purposefully not
taken into account in the methodology of [14]. In
addition, we note that the reference to [13] as a test is
incorrect, since it does not contain the corresponding
calculations of the scattering cross section based on
application of the method of surface integral equations
that confirm the result of [14].

Figures 6a and 6b show the results of calculating
the normalized scattering cross section  for plane
wave angles of incidence  and  i.e.,
when both sides of the plate are illuminated. The
dimensions of the silver plate and numbering of the
curves were assumed similar to the previous case. As
follows from the figures, the scattering cross section

 has one maximum (right and main) associated
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with dipole resonance, and a second maximum (left
with a significantly smaller level) resulting from the
merging of multipole resonances. Note that the posi-
tion of the main maximum  depends on the thick-
ness of the plate: with decreasing plate thickness, it
shifts toward increased values of λ. In this case, the
maxima of the scattering cross section  lie in the
wavelength range  which sig-
nificantly exceeds the case of a plane wave incidence
with an angle  In addition, comparison of the
results presented in Figs. 6a and 6b shows that the
positions of resonance of the scattering cross section

 for angles of incidence   with
the same plate thicknesses virtually coincide.
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Fig. 7. Dependence of normalized scattering cross section
on wavelength an angle of incidence  (a) and

 (b) of plane wave for gold plate with parameters
of a = 50 nm and b = 50 (1), 25 (2), 12.5 (3), 6.25 (4), and
5 nm (5).
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Fig. 8. Dependence of normalized scattering cross section
on wavelength for silver (1) and gold (2) plates with param-
eters  and plane wave angle of inci-
dence 
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Fig. 9. Spatial distribution of field  along
 axis for silver plate with parameters 

 plane angle of incidence  and fixed
wavelength  = 367.27 (1), 400 (2), 539 (3), and 600 nm (4).
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Figures 7a and 7b show the results of calculating
the normalized scattering cross section  for a gold
plate and plane wave angles of incidence  and

 The dimensions of the gold plates are the
same as the silver ones. As we see, the frequency
dependence of the scattering cross section  has
only one maximum determined by the dipole reso-
nance. A decrease in plate thickness here, just like in
the case of a silver plate, leads to a similar change in
the position of the scattering cross section : dis-
placement to the large wavelength region. However,
the wavelength range in which the maxima are located

 is  less than for a silver
plate.

Figure 8 shows the influence of the plate material
on the frequency dependence of the scattering cross
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section . It shows the results of calculating the
scattering cross section  for silver and gold plates
with the same dimensions  and
the angle of incidence of the plane wave  It
follows from the figure that for a silver plate there are
pronounced dipole and one multipole resonances.
Moreover, the gold plate has only dipole resonance.
Differences in the behavior of the frequency depen-
dence of losses for silver and gold (see curves 2 in
Figs. 2a, 2b) explain this behavior of the curves.

In Fig. 9 shows the results of calculating the spatial
distribution of the field  along the 
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Fig. 10. Scattering pattern for silver plate with parameters
  and plane wave angle of incidence

 for wavelength of  (1, 2) and
 (3, 4) as function of loss of silver: curves 1 and

3, 0.001 Im (εs); curves 2 and 4, Im(εs).
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Fig. 11. Scattering pattern for silver plate with parameters
  at plane wave angle of incidence

 as function of wavelength: λ = 490 (1), 750 (2),
450 (3), and 800 nm (4).
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axis for four wavelengths  = 367.27, 400, 539, and
600 nm. The geometric dimensions of the silver plate
are   and the angle of incidence
of a plane wave on the plate  Note that for

 and , there are local maxima
of the scattering cross section. It follows from this fig-
ure that even in the case of a relatively thin plate
( ), in the transverse direction, a suffi-
ciently strong change in the field is observed, which
cannot in any way be considered approximately con-
stant. This also casts doubt on use of the integral equa-
tion obtained by the method of two-sided boundary
conditions [14] to describe the interaction of electro-
magnetic waves with “thin plates” of precious metals.

Lastly, let us discuss the results of calculating the
scattering patterns. Figure 10 shows the calculation
results illustrating the effect of losses for silver on the
scattering pattern of a silver plate with parameters

 at a plane angle of incidence  at
two wavelengths: 396 and 539 nm. As we see, the losses
have a stronger effect on the scattering pattern for
multipole resonance ( ) than for dipole
resonance ( ).

Figure 11 shows the effect of of the wavelength  on
the scattering pattern of a silver plate with parameters

  at a plane wave angle of inci-
dence  at wavelengths of λ = 490, 750, 450,

λ

= 50 nm,a = 5 nm;b
ϕ = π0 4 .

λ ≈ 400 nm λ = 539 nm

=2 10 nma
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λ ≈ 396 nm
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λ
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and 800 nm. Clearly, a change in wavelength λ yields
scattering patterns with a different number of maxima.

CONCLUSIONS
The diffraction of a plane wave by a cylindrical

2D structure—a square or rectangular silver (gold)
plate—is considered. The spectral and spatial charac-
teristics of the scattered field are calculated by rigorous
numerical methods. It was shown that in real gold
structures small in comparison to the wavelength, only
dipole plasmon resonances are present. For silver
plates, dipole and “aggregate” quadrupole resonances
are observed only for a sufficiently large length. The
influence of the geometric dimensions of the plate, the
angle of incidence of the plane wave, and its wave-
length on the positions of the maximum of the scatter-
ing cross section and the scattering pattern is demon-
strated.
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