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1. INTRODUCTION

The aviation industry is one of the most regulated
industries—the quality, safety and efficiency of avia-
tion systems operation has a direct impact on people’s
lives and health.

In recent years, major aircraft manufacturers and
airlines have come to the conclusion that through the
use of predictive analytics and engineering knowledge,
data collected by aircraft telemetry systems during
flights, as well as other data on the life cycle of the air-
craft, can be used to maintain equipment based on
automatic monitoring of its condition (so-called Pre-
dictive Maintenance, or Prognostic Health Manage-
ment, PHM). PHM plays an increasingly important
role in ensuring reliability and efficiency—PHM
methods provide opportunities to predict and prevent
possible failures, reduce maintenance costs and
increase f leet utilization.

PHM services can assess the current state of the
equipment, determine its operational status, detect
abnormal conditions in a timely manner, prevent pos-
sible forced downtime [1–3, 20, 38, 43]. The difficul-
ties encountered when constructing PHM models in
aviation are that

—aircraft telemetry data have a very complex struc-
ture: time series with a large number of components
(often more than a few hundred) and a high frequency
of measurements (often on the order of tens of thou-
sands of measurements per f light); large amounts of
data (the typical sample size of training data is mea-
sured in terabytes); missing observations, non-homo-

geneous noise; a complex hierarchical structure of the
types of failures that need to be predicted;

—usually, failures are rare events, for this reason
the task of forecasting is imbalanced [13, 39], that is,
typical data samples contain many examples of normal
system functioning and only a small number of exam-
ples of a system in an abnormal state.

In [33, 42] the authors considered autoregression-
type models for predicting telemetry time series with
subsequent prediction correction based on kernel
regression and applied the obtained model to detect
anomalies in sensor readings. In [8, 10] they consid-
ered a PHM problem for predicting the time of
replacement of the exhaust valve of the ventilation
control system in the aircraft. To build the models,
they used both features generated from data on certain
events (for example, failures of certain types) at certain
moments of time, and on the basis of autoregressive
models of telemetry readings. In [9] the authors con-
sidered an approach to predicting the lifetime of criti-
cal components of the aircraft air intake system based
on a linear support vector machine. In [44] the
authors solved the problem of detecting failures in
some chemical process on the basis of standard time
series modeling methods. A similar approach based on
vector linear autoregression was used in [22]. In [21]
approaches to online analysis of telemetry from train
axis bearings based on kernel regression were devel-
oped.

In fact, in the works listed above, the following
approaches are used to solve the problem of PHM of a
specific technical system:
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Fig. 1. The general idea of anomaly detection based on
reconstruction with respect to the underlying lower
dimensional data manifold.
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—the problem of prediction of failures is actually
“replaced” by the task of anomaly detection in a
stream of telemetry data; in turn, the task of anomaly
detection is solved by any standard method, often
without taking into account the dependencies between
the observed signals; in many cases to detect anoma-
lies they build a linear model to forecast future time
series values, and then by comparing real observations
and their forecasts they make a decision about the
presence/absence of anomaly;

—in case labels are known, that is, in the historical
sample there is information about at what points in
time failures of what type occurred, the authors usu-
ally use standard machine learning approach—they
generate input features from the telemetry data and
then apply supervised classification methods, e.g. ran-
dom forests.

Note that both of the above “basic” approaches are
generally not applicable when constructing early
warning systems for diagnostic maintenance in the
aerospace industry. Indeed, the number of examples
of failures is usually very small, that is, the corre-
sponding supervised classification problem is very
imbalanced. At the same time, reformulating such
problem as an anomaly detection problem does not
always work either—the corresponding predictive
model must have a low level of false alarms and at the
same time be able to detect a sufficient number of fail-
ures in order to be practically useful; moreover, stan-
dard methods of anomaly detection applied to noisy
high-dimensional telemetry data, will generate a large
number of false alarms.

Thus, the development of an automated system for
failure prediction and early warning of possible costly
malfunctions is a very complex task, and requires the
development of a specialized methodology that will
take into account the above features of the data gener-
ated by technical systems in aviation.

In this paper we consider the problem of constru-
tion of predictive models for early warning systems for
diagnostic maintenance in the aerospace industry.
The author proposes a new approach to the prediction
of rare failures, based on a new methodology that
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allows to take into account the properties of technical
systems and specific requirements imposed by appli-
cations. The application of the corresponding algo-
rithms is illustrated on the problem of forecasting cer-
tain types of engine failures of a passenger aircraft.

2. GENERAL METHODOLOGY
There is the following obvious observation: equip-

ment (say, aircraft engine) typically falls into pre-fail-
ure state starting with some minor f laws, e.g. cracks or
leaks, that evolve in time and lead up to critical failure
events such as complete engine destruction. Accord-
ingly, emerging defects change the statistical proper-
ties of telemetry data, which can be detected by anom-
aly detection methods.

Thus, having this simple observation in mind, we
propose the following general approach to construc-
tion of early warning systems for predictive mainte-
nance, consisting of successive steps of telemetry data
analysis of the technical system:

1. Identification of Subsystems: the features (report
parameters) are partitioned into groups that corre-
spond either to different subsystems within an object
or into clusters, such that features are highly depen-
dent within the clusters and almost independent in
between clusters;

2. Detection of Anomalies: within each densely
dependent group, or an identified subsystem, a
method for anomaly detection is used to uncover
either structural changes in dependence patterns, or
simple extreme values, or any other abnormality (see
Fig. 1);

3. Alarm construction: using simple rules of bool-
ean logic individual simple anomaly binary series are
combined into composite alarm signals;

4. Event Matching: every alarm is tested for predic-
tiveness with statistical techniques designed to identify
best signals which are precursory to failure or warning
events, and tend not to happen anywhere but a short
time prior to such events (see Section 3.2);

5. Warning signal synthesis: sufficiently predictive
alarm signals are pooled into combined alarm, which
fires when at least one constituent alarm is signalled;

6. Leave-one-object-out validation: the whole pipe-
line for predictive alarm construction is run over the
dataset with all but one object and then tested against that
left out object to estimate the performance with respect to
the key early warning metrics (see Section 3.3).

The following sections provide necessary details for
these steps.

2.1. Subsystem Identification
In the general case, the feature space may have high

dimensionality and not much information may be
available about its structure. In order to overcome lack
of domain knowledge it is possible to apply a clustering
LOGY AND ELECTRONICS  Vol. 64  No. 12  2019
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procedure to split the feature space into tightly related
groups. The approach consists of three key steps:

(1) Calculation of interdependence between each
two features;

(2) Pruning of weak dependency scores and con-
struction of an undirected graph with features as verti-
ces and edges between sufficiently strongly dependent
ones;

(3) Partitioning of the feature space based on the
resulting affinity graph with either hierarchical or
spectral clustering methods for community detection
[37], as well as using approaches to embedding of
graphs and their nodes [24].

It should be noted that in rare cases, when there is
access to a detailed description of the technical system
and/or there is an opportunity to get advice from the
relevant engineer, clustering based on the received
description is superior to automatic, but, as the results
of real experiments show, usually not by a very large
margin. In this paper, when processing telemetry
readings from an A380 passenger aircraft, clustering
was obtained based on the description of the detailed
structure and measured parameters presented in the
ACMS reports, see Section 4. As a result, it was possi-
ble to ideally divide the feature space into engine-
related groups of four parameters each and a group of
parameters associated with the aircraft as a whole.

2.2. Anomaly Detection

The general case of anomalous observation detec-
tion, based on learning of a manifold, describing
dependences between features in data, is depicted in
Fig. 1, see also [29–32]. There  is a sample point, is
its reconstruction, obtained through projecting and
embedding based on the learned data manifold . In
general case a data point  may be ejected from the
generating parent manifold  either due to noise or
because of a structural change in manifold, or both.

Another basic method to detect anomalies is to
estimate simple outliers, or extreme values.

In general, due to the fact that in practice it is nec-
essary to process heterogeneous data in a variety of sit-
uations, it is necessary to use different methods of
anomaly detection:

—some telemetry data is represented as multidi-
mensional time series, so it is possible to detect anom-
alies in sensor data streams based on methods from
[5–7, 18, 23, 36], in this case, to predict rare events
and improve the reliability of the result, we can build
ensembles of models, see [4, 26–28, 41], using the
detected anomalies and their characteristics as precur-
sors of the main types of failures;

—when building models, it is also possible to use
privileged information about future events, which is
available at the stage of model training. Similar
approaches used in [14, 16, 40] to detect anomalies

d d̂
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with simultaneous selection of hyperparameters of a
model, allowed to significantly improve the accuracy
of the forecast;

—the sensor data contained in the training sample
often have something like a spatial dimension, since
the different components of the time series correspond
to different nodes of the engineering system; thus, it is
possible to construct a graph of dependencies between
data f lows recorded by different sensors, and use mod-
ern methods of feature extraction based on graph data
[24, 25], as well as methods for feature extraction
based on panel time series data [34, 35], in order to
enrich the set of input features used to construct a pre-
dictive model;

—Another typical method of anomaly detection
approach is based on constructing a surrogate model
[11, 19, 45] to approximate the dependencies between
the observed parameters and then detect anomalies
based on the prediction error of their values using non-
parametric measures to estimate uncertainty [15, 17]
as an indicator of confidence in the decision taken.

2.3. Alarms Signal Synthesis

Alarms signals (about possible future failures) are
constructed by pooling relevant joint anomalies
together. In practice in order to maintain interpretable
prediction, usually we combine alarms signals of not
more than 1–3 types of anomalies. For example, if 
and  is a pair of distinct anomaly sources at some
moment , that were labelled as jointly relevant, then
the resulting alarm signal would be

2.4. Event Matching

There are two possible approaches to the problem
of alarm signal construction. The first, manual
employs domain and collateral knowledge to select
and combine anomalies into potentially predictive sig-
nals. The second, is automatic algorithmic selection,
which extracts sufficiently frequent patterns of alarm
and target event co-occurrence to perform automated
construction of the best alarm signals from individual
anomaly series.

The “manual” method is warranted in rare cases
when there is insufficient number of occurrences of
target events to be able to apply automatic method,
which is frequency based.

A more elaborate exposition of the event matching
algorithm is in Section 3.

2.5. Validation

Model validation is a generic, yet crucial step in the
analysis. The main goal is to test the stability of predic-
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tive patterns of anomalies extracted form the data.
This is achieved by estimating the necessary parame-
ters for the selected anomaly sources on the pooled
sample of all but one object, and then test run the
resulting early warning system on the left out object.

3. EVENT MATCHING

In order to determine which anomalies in the data-
set are predictable with respect to one or another fail-
ure event, one can employ the so-called Event match-
ing algorithm. Essentially, this is a feature selection
procedure, which takes as input

—binary features, conveniently collected in a set
; in our case these features encode whether an

anomaly of a certain type appears at some moment of
time,

—targets ( -signals), and filters out those fea-
tures, which fail to occur statistically more frequent in
a short time window before the onset of a target event.

3.1. Alarm Labeling

Let ,  be the alarms signals,

or, more generally, binary features, and 
is the target event signal. For any binary signal

 we define firing times as

If there are  events, then we define , where

.

Let  be an integer size of the “predictive win-
dow”,  be an integer size of the “predictive hori-
zon”, and  be an integer delay due to a “mainte-
nance action” brought about by the fact that an event
took place. The integers  and  determine the width
and offset, respectively, of a window, within which an
alarm is considered to have signaled this upcoming
event correctly. In turn integers  and  determine the
“maintenance period” during which alarms are
ignored because the maintenance action is still in
effect. The integer  determines for how many
moments prior to the onset of an event an alarm is
considered anticipatory: if , then any alarm prior
to the onset of an event, even if it fired immediately
before, is anticipatory.

Since consecutive streaks of 1 target event signals
can be considered to pertain to the same underlying
breakdown or cause, the occurrences which are too
close to one another are clumped together and treated
as one single “prolonged” event.
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In the following, unless stated otherwise, intervals
of the form  are understood as left-closed right-
open integer intervals, i.e. for 

and  for .

The parameters ,  and  determine the maximal
time separation between consecutive occurrences for
them to be clumped: if , then
events  and  are considered as the same event. Thus
“clumping” transforms the firing times of target event
series  into a collection of non-overlapping intervals

 with sufficient separation between them:

 for all  where  is
the number of “distinct” clumped events. Note that
the intervals are left-closed right-open: —the first
moment of the current onset of an event, —the first
moment just after the event has stopped.

The “predictiveness” of an alarm  with
respect to target events  is determined by counting
how often alarms  fires too early (a false alarm)
or timely (a true alarm) with respect to . Alarms
during maintenance action effects are ignored. The
exact labeling of alarm signals is described below.

Let  be the time of firing of alarm , i.e. .
If no event  takes place during ,

, then the alarm is too early if , and
irrelevant, if . If an event does occur,
then let  be the interval during which the last

th events takes place. This case is similar to the “no-
event” case, in that the alarm is too early, if

, and irrelevant, if .
In such cases it is assumed that the th event
would take place in the “indefinite future”, i.e. during
the interval 

Finally consider any , and suppose that th
event takes place during the interval  (see
Fig. 2). If the alarm at  is signaled before the event
ends, , then this alarm is pertinent to the upcom-
ing event  and, depending on where  lies, the alarm
firing is considered

1. Timely if ;
2. Irrelevant due to maintenance when

;
3. Irrelevant due to event onset if  lies within either

, or ;
4. To be false or too early whenever

.
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Fig. 2. Diagram of order and geometry of false positive and true positive periods, the predictive horizon, and event and “mainte-
nance effect” intervals.
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False alarm interval
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Here it is assumed that for  the previous event
took place in the “infinite past”, i.e. during

Let  be the number of true alarm periods (con-
incides with ),  be the number of false alarm peri-
ods (either , or ). The number of unique true
alarm hits is computed by  

 and total amount

of true alarm hits is given by 

and   The
counter of unique false alarms is

 with  and

 and total true alarm hits by

 

3.2. Matching Algorithm

If  is the feature binary signals

(alarms),  and  is the target event
signal, then the algorithm for matching events with
alarms is as follows:

1. Produce distinct event intervals for  of the
form , for  (  might be zero);

2. Let  be the number of true alarm periods
(coincides with ),  be the number of false alarm
periods (either , or );

3. For each  compute the base metrics:
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(a) Count true alarms total and unique hits  and

, respectively;

(b) Count  and , total and unique hits of false
alarms, respectively;

(c) Compute the following derived metrics:
• the false and true alarm probability estimates

for ;

• the false alarm ratio: ;

• p-value  of the exact test for statistical equal-

ity between  and , when ;
4. Apply at least one of the following strategies to

get :

rule based on t-test: keep , if 
and , where  is some fixed significance level

; usually ;

hard rule: keep , when  and

; here  is a hard threshold, which controls the
support of the hypothesis that  implies the occur-
rence of the event ;

soft rule: keep , if , where 
is some “soft” threshold, controlling the ratio of false
to true alarms.

It is possible that no feature in  is sufficiently pre-
dictive according to specified filtering strategies and
their parameters. Of course, in this case
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Table 1. ACMS-reports information

Report Columns Records Aircrafts 
(out of 31) Phases

R1 322 58917 31 8, 9
R2 406 62919 31 8, 9
R3 318 33831 31 7.1
R4 339 33467 31 7.1
R5 1452 22 12 1, 2, 8
R6 Differ 80 17 1, 2, 8, 11
R7 315 122 4 8
R8 Differ 5701 25 1.1, 2
R9 Differ 30823 31 3
R10 Differ 355 28 1, 1.1, 8
R12 Differ 27432 31 11
R13 Differ 2574 31 9
R14 83 34490 31 11
R15 Differ 359 30 9
R17 225 16964 31 1, 2
R21 Differ 24016 31 8
R23 Differ 6426 31 12
R25 Differ 33533 31 11
R26 Differ 264 19 2, 8, 8.1
R30 831 33557 31 8.1
. Furthermore it is quite likely, that dif-

ferent target events  and  have different sets of pre-
dictive features .

3.3. Predictive Metrics

The key metrics, which characterize efficiency of
any early warning system with fixed prediction hori-
zon and window width, are:

• number of false alarms (false positives), or false
alarm rate;

• ratio of covered events (true positives) to total
number of event occurrences correctly detected.

The precision of the early warning system is
inversely proportional to the false alarm rate (or
number). The more precise a system is, the more
confidence its users may put to the fact that alarms
indeed anticipate events, rather than just being a spu-
rious signal.

The sensitivity of a system measures the share of
events that a system can catch, and it is directly pro-
portional to the number of covered events (the cover-
age rate).

These metrics are at the core of event matching
algorithm, and are directly used for feature selection.
For a particular target event and alarm signals

predictive 0=^

1
y

2
y

( ) ( )1 2
predictive predictivey y≠^ ^
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 and , respectively, these
metrics are calculated with the following steps:

1. Compute the false-, true- and event intervals for
 with parameters ,  and , as in Sec-

tion 3.1;

2. For the alarm signal  get , , and 
counters over this interval structure;

3. Get the metrics:

false alarm rate 

coverage rate 

Note, that false alarms are counted as total number
of hits of false positive intervals, whereas the true
alarms are computed as unique hits only.

4. RAW DATA SUMMARY
Passenger aircraft telemetry data is presented in the

Central Management System (CMS) reports and in
the Aircraft Condition Monitoring System (ACMS)
reports. CMS reports contain binary (yes/no) data
about certain types of events (for example, failures of
certain types) at certain points in time. CMS reports
contain information about one or more snapshots of
the values of a set of specified parameters, as well as
messages with descriptions of certain failures collected
from different subsystems of the aircraft.

CMS event occurrence data and raw CMS report
data are stored in plain text files with a tabular struc-
ture. This paper presents the results obtained from his-
torical data that covered the period from April 2011 to
November 2013. The data is available for 31 aircrafts.

Each record in CMS files contains at least time of
occurrence, aircraft number and flight phase. Extra
fields are not used in dataset preparation and further
analysis.

Each ACMS report has a type (a number ranging
from 1 to 30), contains time of acquisition, f light
phase, values of measurements of parameters and
extra data such as codes of departure and arrival
points, type of aircraft, etc. ACMS reports conform to
Engine Alliance specification and the following types
are available: 1 through 15, 17, 21, 23, 25, 26, and 30.

Sets of measured parameters contained in a report
vary with its type. Time range covered by available
reports also depends on their type, e.g., all available
reports of type 1 may cover different time range than
the ones of type 2. Table 1 provides a summary of
available ACMS reports, including information on a
number of aircrafts out of 31 aircrafts, for which
ACMS reports of the corresponding type are available.

For analysis of some types of failures in A380 we
used ACMS reports available for all aircrafts and hav-
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Fig. 3. Flight phases.
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ing the same set of columns. According to Table 1,
these reports are 1, 2, 3, and 4.

5. DATA PREPARATION
A “feature”, or a “measurement” is a parameter

measurement contained in an ACMS report generated
at a particular phase. Parameters from different reports,
but with the same name are treated as measurements of
the same phenomenon. For example:

• parameter MN_D10 (Mach Number) from R1
measured in phase 8 is one feature;

• MN_D10 from R2 measured in phase 8 is the
same feature, although measured for a report of
another type;

• MN_D11 from R1 measured in phase 8 is
another feature, since, as its name indicates, it draws
on a different source for its value;

• MN_D10 from R1 measured in phase 9 is also
another feature, since f light phase of acquisition is dif-
ferent (see the list of phases in Fig. 3).

For each aircraft, matrices  and  with following
properties were formed:

• Matrix  is a flight-feature matrix, i.e.,  is a
value of th feature, measured during th f light;

—Matrix  may contain missing values due to one
of the following reasons:

• A missing value in initial ACMS data, a value
labelled as erroneous, as determined by the prefix in
the raw report dump;

• Not every report is generated during a f light;

X Y

X ijX

j i

X
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—Matrix  is a flight-failure binary matrix, i.e.
 if a CMS message with the th failure code

occurs in the th f light, otherwise .
Each row  and  represents a single f light,

whereas a column of  represents a single ACMS fea-
ture and a column of  represents an indicator of a
CMS failure code appearance. Rows of both matrices
are synchronized:  and  correspond to the same
flight, and ordered chronologically.

The raw ACMS and CMS data neither directly
identifies a f light during which a reports was gener-
ated, nor provides information on the time and dura-
tion of a f light. This information is crucial to proper
synchronization of the dataset, for otherwise these
artifacts may be introduced into it:

• either grouping of report instances that actually
corresponding to different f light;

• reports from different f lights might get pooled
into same flight;

• flight, during which no reports were produced at
all, which means that some consecutive rows in the
dataset could represent non-consecutive f lights;

• mis-assignment of CMS fault event records,
would result in incorrect results.

5.1. Details of Data Preparation

These problems, indicated above, were resolved by
pooling the row data from all reports and ordering it
with respect to the timestamp of report acquisition and
its phase. This solution rests on the following assump-
tions:

Y

1ijY = j

i 0ijY =
X Y

X

Y

iX ⋅ iY ⋅
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—During a f light, an aircraft passes f light phases in
their natural order: consecutively from 1 to 7, then 7.1,
8, 8.1 in arbitrary order, and at last from 9 to 12 in suc-
cession;

—During each flight, at least one ACMS report is
generated during phases 1–7, at least one during phases

, and at least one during phases 9–12;
Algorithm of construction of matrices  and  for

each aircraft:
1. Recognize f lights and assign reports to them
(a) Sort all ACMS reports available for the aircraft

by their acquisition timestamp;
(b) Find intersection of time ranges covered by

ACMS reports R1–R4, and drop all reports acquired
outside of this intersection;

(c) Denote remaining reports as  (in chrono-
logical order). Denote value of parameter  of
report  as .

(d) Find all , such that  has earlier f light
phase than , excluding the cases when phases of ,
and  from the subject domain point of view should
not contain information about those types of failures
which we would like to predict.

(e) Denote  from the previous step as ,
also denote , .

(f) Under the assumption, reports acquired in
flight , are  and  is total number of
flights in data. Assign reports to f lights using this rule.

(g) Estimate time of start and time of end for each
flight as 

 In this man-

ner f light  starts no later than , and ends no

sooner than .

6. PREDICTION OF CERTAIN TYPES 
OF FAILURES FOR A380

The data used in this case is ACMS reports 1
through 4, which provide value in the areas of Indica-
tion Faults, Scheduling faults, Gas Path Monitoring,
and Engine Performance Monitoring.

These report provide data which is a major element
in Engine Removal Scheduling, with potential for
extending engine Time on Wing, and for Engine
Workscope planning.

Given below are basic descriptions of reports 1–4:
Report :
The “Engine Cruise Report” provides data on such

Indication Faults are sensor errors (offset, drift, noise)
and sensor processing errors (signal conditioning cir-
cuitry, wiring). Examples of Scheduling faults are mis-
rigging, broken or sticky linkages for Bleeds and

{ }7.1,  8,  8.1
X Y

1, nr r…
param

ir [ ]paramir

1i > ir

1ir − ir

1ir −

i …2, , ms s

1 1s = 1 1ms n+ = +

j
++ −…

11 1, , ,  ,
j j js s sr r r m

[ ]start TIMESTAMP INDEX ,
jj st r=

[ ]1

end
1 TIMESTAMP INDEX  .

jj st r
+ −=

j
start
jt

end
jt

001
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Vanes, Bleed Leaks, TCC faults (valves), and Air Oil
Cooler faults (valves). Detection of Scheduling faults
is often aided by information from “Take Off” and/or
“Climb Reports”. Gas Path Monitoring provides data
for trending of Module performance degradation.

Report :
The “Aircraft Cruise Performance Report” cap-

tures data required for aircraft performance monitor-
ing in “cruise” phase. It extends the “Engine Cruise
Report” by recording sufficient parameters for air-
craft, engine and internal component performance.

Report  and :
“Engine Climb Report” and “Engine Takeoff

Report”, respectively, provide data over Indication
and Scheduling faults, which are detailed in the
Engine Stable Cruise Report; Engine Performance
Monitoring measurements include Maximum Con-
tinuous EGT Margin, Climb Reduced Thrust Derate
during Climb phase, and Take Off EGT Margin and
Take Off Reduced Thrust Derate during the Take off
phase. These reports complement Report  as
subtle Scheduling faults require observation at two or
more operating points.

The goal was to find failures related to engines’
operation (ATA codes 60-80; ATA codes—Air Trans-
port Association numbering system), that could be
foreseen by cleverly constructed early warning signals.
Physically irrelevant positional, angular and control
parameters were excluded. The resulting early warning
alarms rely mostly on engine related data, but some-
times include measurements related to the aircraft as a
whole.

The dataset was prepared with the technique,
described in Section 5.

6.1. Feature Partitioning

The original format of reports 1–4 as presented in
specifications for Engine Alliance engines is the fol-
lowing: a header block followed by the data block.
Each block is a set of groups consisting of a header line
and up to four lines of data in a column. Each line is
numbered according to the following pattern: block
name||within-block line number, where the “||” symbol
stands for concatenation. Block name has format
‘ ’, i.e. a letter and a decimal digit. Line
number is a one-digit number. The block header
defines the measurement reported in its column,
whereas the number of lines varies, depending on the
source of the data.

For these reports, in a parameter column with
4 reported rows, each measurement has 1 of 4 ACMS
channels as its source. Each channel can be identified
with a particular engine mount point on the aircraft,
which is assume to be hardwired through the fuselage
of the airplane and never rewired throughout the

002

003 004

001

[ ][ ]0 9A Z− −
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whole lifespan of the aircraft, until it is decommis-
sioned entirely.

In the raw data of these reports parameter columns
are collapsed into a single row with parameter (mea-
surement) identifiers having the following format:
parameter name || “_” || block name || within-block line
number.

It is important to note that parameter names are
alphanumeric sequences separated from the column
identifiers by an underscore. For these reports a rule
which determines whether a given parameter is related
to the aircraft or is a measurement of some engine-
related characteristic is very simple:

—engine-related, if four rows within a block are
reported;

—aircraft-related, otherwise.
For example “EGTRM_E10, EGTRM_E11,

EGTRM_E12, and EGTRM_E13” are considered
engine-related, whereas “CAS_A10, CAS_A11, and
CAS_A12”, or “GWT_B10” are different aircraft-
related measurements. Thus engine-related features
are partitioned into groups of 4 measurements—one
per each engine (ACMS channel).

The measurement groups used in the analysis are
formed from parameter and block name, while the
elements of a group are values in the the rows of the
corresponding column. It is important to note that
data is grouped only within each report and never
between the reports. This produces the following
groups: “R” || report number || “::” parameter name ||
“_” || block name || “x”.

For instance, the measurements mentioned before
get this name:  Aircraft-related
data is not grouped at all and each measurement is
used as a single feature.

6.2. Anomaly Extraction

Anomalies within each engine-related parameter
group are extracted by a detector based on the Princi-
pal Component analysis [12], which consists of the
following steps:

1. The training data is used to learn a 1-dimen-
sional linear manifold, which explains the most of
joint variance of elements within the group; see Fig. 1
with , being a linear 1 subspace, constructed from
the principal directions of the estimated covariance
matrix of the measurements in a group;

2. The test data point  is projected onto the man-
ifold to a point , with respect to which the linear

reconstruction error  is inferred;
3. The abnormality score is computed by taking the

logarithm of ;
4. The threshold, which categorizes the scores into

“normal” and “anomalous”, is set to the -

“R1::EGTRM _ E1x” .

}

d

d̂
2ˆQ d d= −

Q

( )1 − α
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quantile of the empirical distribution of the score of
the train dataset, where .

In general, we can use any other anomaly detection
method instead of this particular anomaly detection
approach based on PCA. In the considered case it is
the detector based on PCA, which provided the best
possible failure prediction accuracy.

Anomaly extraction process for aircraft-related
measurements is simpler: the threshold for abnormal-
ity is set to -quantile of the empirical distribu-
tion of the measurement in the train dataset, with

.

6.3. Generation of Alarms Signal

For each target fault event signal  (occurrence
of an CMS fault code) construct a subset of pairs of
individual anomalies , such
that  if and only if  is considered to be suffi-
ciently predictable by the signal . Intui-
tively, if anomalies happen exactly at during the same
flight, see Section 2.3, and significantly more fre-
quently before a fault event, then they are in .

Alarms signals for event  are synthesized using:
 i.e. an early warning signal is fired if at

least one joint anomaly was detected. The advantage
of this “at least one” rule, is that the chances that
pooling predictive anomalies increases the chances of
successfully anticipating an event, whereas a drawback
is that such ensemble has elevated number of false
alarms, since not always anomalies are perfectly pre-
dictive (i.e. occur never but before an event).

6.4. Estimation of Forecast Accuracy

The quality parameters of the early warning system
(see Section 3.3) were set to  in case of horizon,

 in case of f light window width, and  in
case of duration of maintenance effects.

In Fig. 4 we present the results of predicting various
types of failures associated with the engine:

—the first column of the table lists the names of
different types of engine-related failures;

—the second column of the table lists the ATA
codes for these types of failures;

—the next three columns of the table for each type
of failure contain information about the number of
failures that were correctly predicted, the number of
false alarms, and finally the total number of failures
of this type, respectively.

Thus, from the results presented in Fig. 4, it follows
that using the algorithm proposed in this work, it was
possible to obtain the accuracy of the forecast, which
provides the detection of ∼28% of important failures,
and the number of false alarms is less than ∼10% (that

{ }95%,99%α ∈

( )1 − α

{ }95%,99%α ∈

1( )T

t ty =
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Fig. 4. Results of predicting various types of engine-related failures (see description in Section 6.4).

Results for A380 engines
ENG 3 STALL

Warnings
codes

Covered
warnings

False
alarms

Total number
of warnings

7100W430 4 0 21

ENG 3 FADEC SYS FAULT 7325W230 2 1 4
ENG 2 REVERSER CTL FAULT 7830W320 6 0 23

ENG 3 REVERSER UNLOCKED 7830W230 2 0 10
ENG 2 REVERSER UNLOCKED 7830W220 7 1 22
ENG 3 REVERSER INHIBITED 7830W130 2 0 23

ENG 4 ING A FAULT 7400W120 3 0 14
ENG 1 ING A FAULT 7400W090 2 0 5
is, on average, nine correctly predicted failures for one
false alarm). These accuracy indicators meet the
requirements for such models in practice, and there-
fore the models have been integrated into the cus-
tomer’s system for early warning of failures.

Note that the constructed models of early warnings
about failures are based on a combination of several
“simple” models. Each of these “simple” models
either detects anomalies in the behavior of parame-
ters from the group of parameters associated with the
engine, or by a threshold rule detects anomalies in
the values of parameters related to the aircraft (see
Section 6.2). Thus, in each case of early warning
about a failure, it is possible to find out due to change
in the values of which parameters the alarm
announcement has occurred. This in turn makes these
types of models interpretable and helps engineers ser-
vicing the technical system to find the causes of failure
faster if it occurs.

If we apply standard methods of machine learning
for the construction of predictive models based on
random forests, gradient boosting over decision trees,
neural networks, etc., it is not possible to achieve com-
parable accuracy indicators, which are presented in
Fig. 4. This conclusion applies both when the same
input features that were used in the construction of the
proposed models of early warnings about failures are
used, and when any other available telemetry inputs
and combinations thereof are used. Perhaps the reason
is that to achieve an effective relationship between
such indicators as “rate of false alarms” and “rate of
undetected targets” it is necessary to use those models
that effectively take into account the structure of the
problem. The point is that in practice, before a failure
occurs, small changes in the behavior of the system
usually begin, caused by emerging defects that can be
detected by analysing properties of the data f low com-
ing from the sensors. These defects worsen over time
and lead to critical failures, up to complete equip-
ment failure. Accordingly, the approach described in
Section 3 allows to build models that simulate this
observation, and these models have a fairly “simple”
structure—and therefore they are more robust. In
JOURNAL OF COMMUNICATIONS TECHNO
turn, predictive models constructed using standard
machine learning methods (construction of features
based on available telemetry data and subsequent
application of methods such as gradient boosting over
decision trees) are excessively complex and have an
inflated level of false alarms.

7. CONCLUSIONS

In this paper, we consider the problem of con-
structing a model to predict rare events in a situation
where there are hundreds of different indicators of the
state of the technical system and it is necessary to pre-
dict the failure, examples of which in the available
sample of historical data is quite small (the sample is
imbalanced). Thanks to the developed approach, it
was possible to predict some possible failures of an air-
craft. Due to the special structure of the model, we
provided a low level of false alarms with a significant
proportion of detected failures. Experiments using
standard machine learning methods to construct pre-
dictive models have not allowed to obtain predictions
with comparable accuracy.
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