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Abstract—The beam instability in the plasma with density slowly varying with time has been investigated using
the potential approximation. It has been shown that a frequency shift occurs in the amplified signal propa-
gating in such an electrodynamic system; analytical relations for determining the value of this shift have been
obtained. It is demonstrated that the frequency is shifted most strongly as the plasma density decreases, when
the Langmuir frequency of plasma electrons approaches the signal frequency and the instability increment
increases with time.
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Experiments on microwave plasma electronics
have led to the implementation of plasma amplifiers
[1, 2] and microwave oscillators [3, 4] with a wide
(about an octave) tuning range of the operating fre-
quency, which are promising for an increase in the
radiation power and the length of the radiation pulse.
Since not all of these advantages were completely
implemented, experimental [1–5] and theoretical
[6‒9] studies on different aspects of the beam-plasma
interaction have been continued. Microwave plasma
sources represent metal waveguides filled with plasma
and penetrated by the electron beam. Development of
the beam-plasma instability leads to modulation of the
electron beam and excitation of an electromagnetic
wave in the system. One of problems of such micro-
wave plasma sources is the plasma nonstationarity,
which can be related to either the conventional decay
of plasma (in long-pulse systems) or its additional ion-
ization, as well as to the plasma escape from the work-
ing region during injection of a high-current electron
beam [10]. This study is aimed at investigation of
beam-plasma instabilities in nonstationary plasma
systems. In real systems, the plasma density becomes
nonstationary in the first place, and the characteristic
plasma density variation time considerably exceeds the
period of excited oscillations.

Studies of excitation and propagation of waves in a
nonstationary medium have a long history. A well-
known mechanism of radiation of electromagnetic
waves by a charge uniformly moving in an inhomoge-
neous medium is the transition radiation, which was
first studied in [11]. A similar phenomenon was
observed in a homogeneous medium, but with a time-

dependent refractive index [12–14]. Nonstationary
processes play an important role in problems of prop-
agation and reflection of electromagnetic waves in the
optical range. The permittivity of the medium can
sometimes vary with time. This variation can be
related to the processes of relaxation in the medium,
laser pumping of the medium, or its ionization by an
external source. Moreover, characteristic permittivity
variation times can be larger than the wave period
(slow variation), comparable with it, or stepwise (very
fast as compared to the field period). In [15, 16], the
theory of wave propagation in media with time-depen-
dent electromagnetic properties was presented. The
consideration was based on the exact solution of the
Maxwell equations for specially selected time depen-
dences of the permittivity. In particular, in [17], the
change in the frequency of a signal reflected from an
immobile nonstationary medium was determined. In
addition, other cases of wave propagation, reflection,
or excitation can be considered as nonstationary, in
particular, reflection from a moving ionization front
or development of the beam-plasma instability in sys-
tems with a short electron beam pulse [18].

Let us consider a homogeneous cold electron
plasma. We assume that the unperturbed electron
density  is a slowly varying function of time. The
plasma is penetrated by a homogeneous electron beam
moving at constant velocity u directed along the z axis.
The dynamics of the electron subsystem of the plasma
is described by the system of hydrodynamic equations
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Here,  and  are the density and velocity
of plasma electrons,  and m are the electron
charge and mass, and  is the potential of the electric
field. The right-hand side of the continuity equation is
the source of variation in the electron density. As was
mentioned above, this variation may be due to the
decay of the plasma or its additional ionization, escape
to the walls, etc. Let us linearize system (1) with
respect to small perturbations of the initial state by
representing the unknown functions in the form

As a result, we obtain

(2)

Two equations of system (2) can be easily reduced to
one equation for the electron density of the plasma

(3)

The dynamics of the beam electrons is described by
the system analogous to system (1):

(4)

The unperturbed beam density is assumed to be sta-
tionary; the relativistic effects in the motion of the
beam electrons were taken into account;

is the relativistic factor, and c is
the velocity of light. Specifying perturbations of the
beam density and velocity in the form

we write the system of equations of the electron beam
linearized relative to perturbations:

(5)

Here, it is assumed that velocity  contains only the

component,  and 
Similarly to the case of system (2), we reduce system of
equations (5) to one equation for dynamics of the
beam electron density

(6)

The potential of the electric field is determined
from the Poisson equation
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where  is the density of ions neutralizing the charge
of the electron subsystem. Ions are assumed to be
immobile in view of their large mass. Linearizing
Eq. (7) with respect to small perturbations, we write
the Poisson equations in the form

(8)

Substituting (8) into (3) and (6), we arrive at the
system of two equations describing the dynamics of
the beam-plasma instability in the nonstationary
plasma

(9)

Here, we introduced plasma frequencies of beam
electrons  and plasma electrons

 To perform further calculations,
it is convenient to pass from system (9) to one equation
for perturbations in the beam. Specifically, substitut-
ing  from the second equation of system (9) into the
first equation, we obtain

(10)

We are interested in the solutions at sufficiently
large times t, so that all processes in the investigated
region  caused by passage of the beam front were
completed and the solution  was fully deter-
mined by boundary conditions at  (the amplifier
problem). Since we have the second-order derivative
with respect to coordinate in (10), two conditions
should be specified at the boundary . Physically,
it seems the most natural to specify modulation of the
beam velocity. This modulation can be implemented
by transmitting the initially homogeneous mono-
velocity beam through a short accelerating interval
with a small-amplitude ac voltage with frequency ω
specified at its ends. Then, upon propagation of the
electron beam in free space, the velocity modulation
will lead to the density modulation. Thus, using
Eqs. (5) with zero right-hand part corresponding to
free motion of the beam, one can show that, at the
boundary of the beam-plasma interaction region at

, modulation of the longitudinal component of
the beam velocity and density has the form

(11)

in

( )2 4 .p be n n∇ δΦ = π δ + δ
�

2
2 20

2
0

2
2 3 2 3

' ( ) ( ) ( ) ,
( )

.

p p p b

b b b p

n t t n t n
n t tt

u n n
t z

− −

⎡ ⎤∂ ∂− + ω δ = −ω δ⎢ ⎥
∂∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂⎛ ⎞+ + ω γ δ = −ω γ δ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

2 24b bn e mω = π
2 2

0( ) 4 ( ) .p t n t e mω = π

pnδ

− −

⎡ ⎤∂ ∂− + ω⎢ ⎥
∂∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂⎛ ⎞× + + ω γ δ = ω γ ω δ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

2
20

2
0

2
2 3 2 3 2

' ( ) ( )
( )

( ) .

p

b b b p b

n t t
n t tt

u n t n
t z

0z >
( , )bn t zδ

0z =

0z =

0z =

( )
( )

( , 0) exp ,
( , 0) exp .
bz

b b

t z uB i t
n t z in C i t
δ = = − ω

δ = = − − ω
v

 ELECTRONICS  Vol. 63  No. 8  2018



924 KARTASHOV, KUZELEV
Dimensionless coefficient B specifies modulation of
the beam velocity and dimensionless coefficient C
determines modulation of the beam density; ratio 
is a real positive number proportional to the length of
the free drift space. If immediately after the accelerat-
ing interval the beam enters the beam-plasma interac-
tion region, the density modulation does not occur
and coefficient C appears to be zero. In order to use
boundary conditions (11) together with Eq. (10), it is
convenient to transform them by expressing the veloc-
ity modulation via the spatial derivative of the density
modulation. Using system (5) instead of first bound-
ary condition (11), we obtain

(12)

Applying the Laplace transform to Eq. (10) with
respect to the coordinate  and retaining the anal-
ogous designation for the image

(13)

we obtain

(14)

The integral in (13) is determined for negative values
with sufficiently large absolute values of 
(  increases at  not faster than the expo-
nent). In the range  in the plane of complex k,
values of  should be considered as the analyt-
ical continuation of Eq. (13).

The right-hand part of Eq. (14) corresponds to
boundary conditions (11). Since plasma density 
varies slowly with time, different terms of Eq. (14)
have different orders of smallness with respect to the
parameter  where T is the oscillation
period and τ is the characteristic time of plasma den-
sity variation. We will seek the solution of this equation
using the perturbation theory by separating the orders
of smallness. Specifically, the forced solution of
Eq. (14) can be written in the form

(15)

where  has the zero order of smallness  while

 has the first order of smallness  both ampli-
tudes are slow functions of time, i.e., 
The orders of smallness higher that the first order will
be ignored.
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In the zero order of smallness, Eq. (14) is reduced
to the equation for amplitude 

(16)

Its solution can be easily written as

(17)

To recover solution , we perform the inverse
Laplace transform

(18)

where the integration contour lies in the plane of com-
plex  in parallel to the real axis below all singularities
of the integrand. According to Eq. (17),  has
two first-order poles at

(19)

Then, we assume that the external signal frequency
 and the wave is amplified. For the signs

chosen in Eq. (19), the minus sign corresponds to the
wave amplified in the positive direction of the z axis.
In order to calculate the integral, we close the integra-
tion contour by a semi-circle of an infinitely large radius
in the domain of  The integral over this semi-
circle is zero. Then, calculation of integral (18) is
reduced to calculation of the integrand residues at
poles (19). These calculations yield

(20)

Relationship (20) does not differ from the solution of
the problem in the case of the stationary plasma,
where the plasma frequency is formally considered to
be time-dependent. In fact, exactly such solution for
the beam-plasma instability was used in [19].
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Fig. 1. Time dependence of decreasing plasma density at
β = 0, 5, –5, 10, and –10.
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In the first order of smallness, Eq. (14) can be
reduced to the equation for amplitude 

(21)

Substituting  from (17), we have for 

(22)

Performing the inverse Laplace transform, as was
made to obtain Eq. (20), we determine the first-order
correction. Then, we assume that C = 0 (the beam
enters the region of interaction with the plasma with-
out density perturbation) and retain only solutions
corresponding to the wave increasing due to the beam-
plasma instability. Taking into account the first order
of smallness, we have

(23)

where

(24)

At a sufficiently slow plasma density variation with
time, we can write (23) in the approximate form
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introducing the time-varying increment of the wave
phase
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The time variation of the wave phase will be recorded
as the frequency shift of the amplified signal by

(27)

To perform the numerical analysis of Eq. (27), we
take parameters similar to those used in the experi-
ments on the plasma–beam interaction [1, 2]. We
specify the time dependence of the plasma electron
density in the form

(28)

where  is the observation time; by the time , the
plasma density changes by a factor of . The
minus sign corresponds to the decreasing plasma den-
sity and the plus sign, to the increasing one. Parameter
β characterizes the shape of time profile (28); in par-
ticular, at , we have linear time variation in the
plasma density. We choose the following parameter
values: the Langmuir plasma and beam frequencies

 and  the characteristic

plasma density variation time  the system
length , and  These parameter
values correspond to the situation when the plasma
density noticeably changes in times of several hun-
dreds of oscillation periods; the system length corre-
sponds to seven wavelengths. By the instant of time ,
the plasma density changes by 40%.

Figure 1 shows time dependences of the plasma
density at β = 0, 5, –5, 10, and –10. In all cases, the
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Fig. 2. Time dependence of the frequency shift of the
amplified signal for decreasing plasma density at β = 0, 5,
–5, 10, and –10.
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Fig. 3. Time dependence of increasing plasma density at
β = 0, 5, –5, 10, and –10.
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Fig. 4. Time dependence of the frequency shift of the
amplified signal for increasing plasma density at β = 0, 5,
–5, 10, and –10.
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plasma density decreases. Figure 2 shows correspond-
ing time dependences of the amplified signal fre-
quency  The increment of the wave phase 
is determined by both the plasma density variation rate
and the value of  which, being negative, decreases

.Δω ω ( )tϕ

",α
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as  approaches ω. At positive values of β, the plasma
density first rapidly decreases; in this case, the value of

 is relatively small; then, at the end of the pulse, the
plasma density decreases slowly, while the value of

 on the contrary, grows. This behavior determines
a sufficiently slow variation in the increment of the
wave phase  and, consequently, small values of

 At negative values of β, the plasma density rap-
idly varies at the end of the pulse along with rapid vari-
ation in  which leads to a strong decrease in fre-
quency.

Figures 3 and 4 show similar dependences for the
increasing plasma density (the plus sign in Eq. (28)).
In general, the frequency shift in Fig. 4 is smaller than
in Fig. 2. This difference is explained by the fact that,
at the same depth of variation in the plasma density,
the value of  varies slower than in the case of
decreasing density of plasma electrons. The frequency
drops the most abruptly at the beginning of the pulse
for positive values of parameter β, when the plasma
electron density increases most rapidly.

Thus, the change in the frequency of the signal
amplified in the case of the beam-plasma instability,
which is caused by the minor nonstationarity of the
plasma, is significant and can be measured by available
experimental techniques [19]. This circumstance
should be taken into account in studies of microwave
plasma radiators and, especially, their spectral charac-
teristics.
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