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Abstract⎯The potential of image forces for the charge in a three-layer medium (a dielectric film between two
dielectrics) is considered in terms of electric fields (by definition) rather than potentials. It is demonstrated
that the result differs from the usual result by a constant. Related issues are discussed.
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INTRODUCTION
The method of images for determining the electric

field induced by a point charge near bodies of various
shapes was developed by William Thomson (Lord
Kelvin) [1–5]. Thomson applied it to metal bodies,
but the method is easy to generalize for dielectrics. Let
us consider an illustrative example of two semi-
infinite media

1: X < 0, 2: X > 0
with permittivities ε1ε0 and ε2ε0 (ε0 is the permittivity
of vacuum, and ε1 and ε2 are the relative permittivi-
ties). If charge Q is located near the interface of two
semi-infinite media at point x in medium 2, the field
in medium 2 is characterized in this method by the
field of the charge itself (  in the SI sys-
tem, where  and ) and the field
that would be induced in medium 2 by point charge
k12Q (k12 =(ε2 – ε1)/(ε2 + ε1)) located in medium 1 at
a mirror symmetric point (–x, 0, 0) (i.e., this field is

, where ) [1, 3].
Exactly this charge is the image of charge Q. The field
in medium 1 is the same as the field that would be
induced by charge k1Q (k1=2ε1/(ε2 + ε1)) located in
medium 2 at initial point (x, 0, 0) (i.e., the field is

, where ). It can
be demonstrated that the tangential components of
these fields and the normal components of the electric
flux density coincide (i.e., these field and flux density
components are continuous and the electrostatic
boundary conditions are thus satisfied) when the
interface (x = 0) is approached from different direc-
tions. By virtue of the uniqueness theorem for electro-
static problems, this implies that these fields are the
solutions of the considered problem. Note that the
solution for the field is obtained this way, although it is

easy to rewrite it in terms of the corresponding Cou-
lomb potentials (which is usually performed). Note
also that additional fields are actually produced by
bound surface charges.

The method of images (referred to by Thomson as
the “principle of images”) can be generalized for the
case of a point charge near a sphere (inside or outside
it) and for certain more complex problems [1–5].

Charge Q is affected by image force  that may be
put in correspondence with potential energy [6–8]

, (1)

which is typically referred to as the image force poten-
tial (IFP). In the case of two semi-infinite media, the
image force in medium 2 is directed along Ox and is
written as

F1= k12Q 2/(16πε2ε0 x2), (2a)
while the IFP (traditionally measured relative to infin-
ity) is

U 1 = k12Q 2/(16πε2ε0 x). (2b)
Specifically, in the case of an interface with a metal
(ε1 = ∞, k12 = –1), the IFP is

U 0 = –Q 2/(16πε2ε0 x). (2c)
Note that the IFP is not the electrostatic potential
(and does not satisfy the Laplace equation).

The IFP induces the well-known Schottky effect in
thermal emission of electrons from solids (see studies
[7, 8] and reviews [9, 10]).

In more complicated cases, one may use successive
images as successive approximations and seek the
solution in the form of a series [5]. Exactly this
approach was used to calculate the image force poten-
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tial in a three-layer medium (film) [11–13]; a metal–
dielectric–metal (MDM) structure was considered in
[12], and a more general case was discussed in [13]. The
problems in these studies were analyzed in terms of
potentials. The same problem is considered here in terms
of fields; the results for the IFP differ by a constant.

1. IMAGE FORCE POTENTIAL FIELDS 
IN A FILM

Let us consider three media located successively in
regions x < 0 (medium 1 with relative permittivity ε1),
0 < x < d (medium 2 with ε2), and d < x (medium 3
with ε3). Charge Q is located at point x in medium 2.
Let us first characterize the boundary conditions at
interface 1/2. We introduce (as was made above) the
field that would be induced in medium 2 by charge
k12Q located at point –x in medium 1. In order to sat-
isfy the boundary condition for the field and the f lux
density of this charge at interface 2/3, the field that
would be induced in medium 2 by charge k12k32Q at
point 2d + x in medium 3 (here, k32 = (ε2 –
ε3)/(ε2 + ε1)) should be considered. The boundary

condition at interface 1/2 for this charge can be satis-
fied using charge k12(k12 k32)Q placed at point –2d – x
in medium 1. Charge (k12k32)2Q placed at point 4d + x
in medium 3 is then needed; afterwards, charge
k12(k12 k32)2Q at point –4d – x in medium 1, and so on.

Thus, two sequences of images are needed in order
to satisfy the boundary condition at interface 1/2:
these images are “charges” k12(k12k32)nQ at points
‒2nd – x in medium 1, which are located at distances
2nd + 2x from the initial charge (n = 0, 1, 2, …), and
“charges” (k12k32)mQ at points 2md + x in medium 3
located at distances 2md from the initial charge
(m = 1, 2, …). These “charges” describe the field
only in medium 2. The fields at point x (field compo-
nents along axis Ox) from the first and the second
sequences are

 (3a)

and

(3b)

(the series converge absolutely, and their terms can be
rearranged). The minus sign in (3b) is an indication of
the fact that two sequences of images are located on
opposite sides of the initial charge.

Likewise, the boundary condition at interface 2/3
leads to “charges” k32(k32k12)rQ at points 2rd + (2d – x)
in medium 3, which are located at distances 2rd –
2(d – x) from the initial charge (r = 0, 1, 2, …), and

“charges” (k32k12)sQ at points –2sd + x in medium 1
located at distances 2sd from the initial charge (s = 1,
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2, …). These “charges” also describe the field only in
medium 2. The fields of these charges at point x are

(3c)

and

. (3d)

Formulas (3а) and (3b) can be transformed into (3c)
and (3d) by swapping indices 1 and 3 substituting x
with d – x.

Note that individual terms of sums (3b) and (3d)
and the sums themselves are equal in magnitude and
have opposite signs; i.e., their overall contribution to
the total field at point x is zero. The image force acting
on the initial charge is then written as

(4)

At |k12k32| < 1, the series converge absolutely, and the
IFP can be defined as

(5)

where constant А can be chosen by setting the refer-
ence point for the IFP. Note that infinities (in x) are
inaccessible; therefore, we may choose, e.g., the cen-
ter of the film as the reference point.

Similar calculations in terms of the potential result
in the following expression [13]:

(6)

The third terms in (6) are associated with those images
at points –2md + x and 2md + x (m = 1, 2, …) that
produce opposite fields at the considered point x.
They are taken into account in (6) as equal (in magni-
tude and sign) Coulomb potentials measured from
infinity. Note in this respect that the terms for forces in
(3b) and (3d) corresponding to the discussed images
are independent of coordinate x. Therefore, they are
unable to produce Coulomb potentials even at an
intermediate stage in the process of transition from
forces to the potential energy (during integration over
the coordinate). Naturally, the differences in the poten-
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tial energy between neighboring media are of greater
interest. However, in order to determine these quanti-
ties, we should consider the continuous (without a
stepwise change) dependence of the permittivity on
coordinates at the interfaces [14].

Let us then consider the case of |k12 k32| = 1, when
the series in (5) do not converge absolutely and diverge
at k12 k32 = 1. The latter case corresponds to an MDM
structure with k12 = k32 = –1. If the IFP is measured
from the film center (x = d/2), successive approxima-
tions yield the following expression for the IFP:

(7)

Naturally, in principle, the bracketed constants in (7)
could be chosen differently (e.g., –2/[(n+1)d], as in
(6)), but the association with the reference point could
be then lost. In the case of an MDM structure
(k12 = k32 = –1), formula (6) takes the form

. (8)

This expression differs from (7) by the constant

Δ = – U3:

. (9)

It is evident that Δ = (x = d/2).
Note also that the sums in the considered formulas

for the IFP have a characteristic form and can be
expressed in terms of function ψ(z) = d lnГ(z)/dz,
which appears in the theory of gamma-function Г(z)
(see, e.g., [15]). Here,

.

This function was used to describe the electrostatic
potential [16] and the IFP [11] in the case of a charge
in a vacuum gap between two semi-infinite metals (in
a “vacuum film”). Let us recall the following useful
formulas (see, e.g., [17]):
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where γ = 0.577… is the Euler constant [15]. It follows
from (10a) and (10b) that

. (11)

Then (see [11]),

. (12)

The following formulas are valid in the case when
the charge is located in medium 1 at point x (x < 0):

(13)

(14)

where k2 = 2ε2/(ε2 + ε1). If the IFP is measured from
x = –∞, constant В is zero; however, the reference
point should be the same for all three media. In limit-
ing cases, when ε1 = ε2 or ε2 = ε3, formulas (13) and
(14) are reduced to standard expressions for two
media.

2. ENERGY OF THE SYSTEM
Let us turn to an instructive example of the explicit

relation between the IFP and the electrostatic energy
of charges for the case of charge Q located in vacuum
at point (x,0,0) near a metal. Surface charge density
σ( ) at point  = (0, y, z) is written as

.

Evidently, the field produced by surface charges at
point (0, ρ0, 0) has only the y-component, which can
be described by the improper integral

where

This field is equal in magnitude and opposite in sign to
the surface component of the field of charge Q at this
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point. Thus, the total field in the considered plane is
zero (as it should be).

Note that since the electrostatic potential has a
break at charged surfaces, the Maxwell boundary con-
dition for the discontinuity of normal components of
the electric f lux density is described, as it is demon-
strated in the courses, in equations of mathematical
physics (see, e.g., [18]) with the use of corresponding
limits of normal derivatives of the potential (or, equiv-
alently, the field limits). In this approach, the field at
the interface itself (on the surface) remains undefined.
In the present case, this field is equal to the normal
component of the field of charge Q (i.e., it presses the
surface charges against the metal surface).

Thus, if we mentally assume that a force opposite
to the IFP force is applied to charge Q, the system of
charges becomes in equilibrium (naturally, by virtue of
the Earnshaw’s theorem, a purely electrostatic equi-
librium is impossible [19]). In the case of quasi-equi-
librium motion of charge Q and surface charges, one
can demonstrate using the condition of the force bal-
ance in equilibrium that the IFP (U0) is equal to the
electrostatic (Coulomb) potential energy E = E1+E2
of the system. Here, E1 is the energy of interaction
between charge Q and the surface charges:

, (15)

and E2 is the energy of interaction of the surface
charges with each other:

(16)

where  = (0, yi, zi) (i = 1, 2). Thus, total electrostatic
energy Е is two times lower than E1 (E = E1/2):

. (17)

Naturally, it coincides with the IFP.

Note that E1 is equal to the energy of interaction
between charges Q and –Q spaced by 2x. The “extra”
coefficient 2 in the denominator of the expression for
the IFP is associated with the interaction of the surface
charges with each other.

CONCLUSIONS
The potential of image forces in a three-layer sys-

tem has been considered in terms of fields (by defini-
tion) rather than potentials. The result (see Eqs. (4),
(5), (13), and (14)) differs from the standard result by
a constant (see formula (12) for the vacuum “film”).

The potential of image forces affects electron and
ion processes near the interfaces of solids (specifically,
in nanodimensional films). These processes are the
processes of segregation, thermal emission, tunneling,
etc. The common effect is barrier lowering under the
influence of the IFP. However, the IFP raises the bar-
rier near the interface in a medium with a higher per-
mittivity value. This may affect, for example, the emis-
sion of electrons from systems with negative electron
affinity.
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