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Abstract—A tandem queuing system that contains two single-channel stations with finite buffers and allows
blocking of the first server is considered. The first station receives nonstationary Poisson packet f low that is
processed at a controlled rate. In the case of the queue overflow in the first system, the input packet is lost.
The second station does not allow overflow due to control of the acceptance probability (a decrease in such
a probability leads to slowing of packet sending from the first station). The queuing system is described with
the aid of the controlled Markov process . The optimal control problem is considered over a finite time hori-
zon using the criterion of minimum average losses under the constraints on the total service time and energy
consumption of the first station. Optimization algorithms are proposed for synthesis of the control law for
nonstationary data f low in two-agent robotic system.
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1. INTRODUCTION
Multiphase (tandem) queuing systems are used for

mathematical modelling of the processing in which
the arriving units are sequentially served at several
stages. Sequential servicing is natural for query pro-
cessing in help desk centers [1], multimedia data
transfer using wireless channels [2], and data trans-
mission control between elements of a multiagent
robotic system [3].

Blocking policies are used to prevent overflow in
the most important units of the multiphase system.
Two-phase systems with blocking have been studied in
[4–6] and stationary probabilities of states have been
determined under different assumptions regarding the
input f low and the distribution of the service time.

The threshold structure for the strategy that is opti-
mal with respect to the minimum of the weighted aver-

age load has been determined in the first works on
two-phase systems with feedback control [7, 8]. The
theory of Markov decision processes (MDPs) has been
employed in these works to derive the dynamic pro-
gramming equation. This approach has been later gen-
eralized to more general models of controlled queuing
networks [9–11]. Recent works [12, 13] on the optimi-
zation of two-phase queuing systems are devoted to
the analysis of the optimal access control (explicit
expressions for the threshold coefficients of the crite-
rion are presented).

The analysis of published results shows that the
controlled two-phase queuing systems are studied
only in the steady-state mode and the control quality
is determined using a single functional. Thus, the con-
strained optimization of tandem queues over a finite
horizon has not been studied in the theory of con-
trolled queuing networks.

The approach of constrained MDPs optimized in
the steady-state mode has been developed in [14]. The
optimization methods for solving finite horizon con-
trol problems have been proposed in [15, 16] for a class
of nonstationary continuous-time Markov jump pro-
cesses. Such methodology has been employed in [17]
for optimization of a single-channel queuing system.

1 The development of models and algorithms for control of non-
stationary data f low in two-agent robotic system (Sections 2, 3,
and 7) was supported by the Russian Science Foundation (proj-
ect no. 16-11-00063). The analysis of the problem of con-
strained optimization of the two-phase queuing system (Sec-
tions 4–6) was supported by the Russian Foundation for Basic
Research (projects nos. 15-37-20611-mol_a_ved and 16-07-
00677-a).
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In this work, we consider the controlled two-phase
queuing system that contains two single-channel sta-
tions with finite buffers and allows blocking of the first
server. Packets in a nonstationaty Poisson stream enter
the first station. The packets are processed at a con-
trolled rate at the first server. The input packet is lost if
the first queue is full. The second station does not
allow the overflow due to control of the acceptance
probability (or, blocking probability). A decrease in
the acceptance probability leads to delays in sending of
packets from the first station. The queuing system is
described by a controlled Markov jump process which
is optimized on a finite-time interval using the crite-
rion of minimum average losses under the constraints
on the total processing time and energy consumption
of the first station. We propose two algorithms to
determine optimal control within the classes of cen-
tralized and decentralized strategies. The computer
simulation results show a typical form of the optimal
strategy in the data transmission control problem for a
two-agent robotic system.

2. INFORMAL DESCRIPTION 
OF THE MODEL

We consider an open tandem queuing system that
consists of two single-channel stations. They play the
role of a transmitter and a base station. The transmitter
receives the input f low of packets (data units) and
sends them (with a random delay time) for the further
processing to the base station.

The number of packets in both systems is limited
and the maximum numbers are M and N, respectively.
If the first queue is full, the arriving packet is lost. Such
an event is undesired, and the corresponding probability
must be minimized. For this purpose, we can vary two
parameters μ ≥ 0 and ϑ ∈ [0, 1], where μ is the service
rate in the first station and 1 – ϑ is the probability that
the second station rejects the packet. The rejection is
used to avoid overflow of the base station, and, in the
case of rejection, the packet is not lost and is stored in
the transmitter. Thus, the product of parameters μ and
ϑ can be interpreted as the total rate for packet trans-
mission from the transmitter to the base station.

The queuing network must provide a desired level
of the total service time, including delays in transmis-
sion, waiting in queues, and processing at the base sta-
tion. The server of the base station operates with a
fixed processing rate ν.

Service rate μ must be increased to minimize the
number of lost packets and decrease the total service
time. However, the operability of the transmitter is
related to strict constraints on energy consumption, so
that an infinite increase in service rate μ becomes
impossible.

Parameter ϑ must also correspond to a certain
intermediate state between two extreme values corre-
sponding to blocking of all the traffic from the transmit-

ter (ϑ = 0) and the acceptance of all packets (ϑ = 1). In
the latter case, the buffer of the base station is rapidly
filled with big amount of packets which leads to over-
flow of the transmiter and, hence, significant losses.

We assume that both parameters (μ and ϑ) depend
on time and state to take into account the nonstation-
ary character of the input f low and be able to respond
to changes of network functioning. Thus, the desired
control is built in the feedback form. However, two
basically different formulations must be considered. In
the first formulation, service rate μ of the transmitter
and acceptance probability of the base station ϑ are
controlled using complete information on the current
state of the network. Such control is called centralized,
since it involves matched functioning of the transmit-
ter and base station. In the second formulation, service
rate μ is determined only by the state of the transmitter
while probability ϑ depends only on the state of the
base station. Thus, the decision making in each system
is performed in the presence of incomplete informa-
tion on the state of the other system. Thus, the corre-
sponding control is decentralized.

The scenario with incomplete information is more
realistic for the transmission of video-data f low or
telemetry when the data are sent to a stationary moni-
tor station from an on-board transmitter of an
unmanned aerial vehicle (UAV). The UAV’s queuing
system transforms the input data f low into a series of
standard packets in accordance with the data-
exchange protocol of the base station. Thus, service
rate μ is determined by the time that is spent by the for-
mation and sending of the packet and probability ϑ is
determined by the arrival rate of messages from the
base station that confirms the successful delivery. In
the presence of rejections (ϑ < 1), average time of
packet sending 1/μ increases by (1/ϑ – 1) × 100%.

Therefore, the infotelecommunication system
described above needs to be optimized with specific
requirements on its structure, nonstationary behavior
of input data f low, and limitations on energy con-
sumption.

3. FORMULATION OF THE PROBLEM

Below, we formally analyze the queuing system.

Let X(t) and Y(t) be the numbers of packets at the
transmitter and base station, respectively, at moment t.
Then, random process Z(t) = (X(t), Y(t)) that
describes the current state of the network takes values
from the set

We assume that the packets that arrive to the trans-
mitter form a nonstationary Poisson flow with known

{ } { }
= ×

= =
, where

0,1,..., , 0,1,..., .M N
] - =

- =
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continuous intensity α(t). First, we consider a con-
stant control u:

where  and  are the given
ranges of the service rate at the transmitter and accep-
tance probability of the base station. In this case,
Z(t) is a nonhomogeneous Markov process with gen-
erator A(t, u) represented by a linear operator that acts
in space  (i.e., space of real functions h determined
on ]). If h ∈  is defined by the set of entries

, we have

where  at  is the transition rate 
and  is opposite to the exit rate from state z,
so that

Three variants of transitions are possible: accep-
tance of a packet by the transmitter, packet sending,
and processing at the base station. For each state
(x, y) ∈ ], we have

Then, we assume that control U(t) is described
using random process

(1)

in which service rate μ(t) and acceptance probability
ϑ(t) are determined by the functions of time and cur-
rent state:

(2)

Functions mz(t) and vz(t) are called strategies and rep-
resent Borel functions with values from intervals 
and , respectively. The strategies are centralized,
since they are parametrized using subscript (network
state) z ∈ ]. Notation 8 is used for the class of con-
trol (2) that employs complete information on the
state of the system.

If the queuing systems of the transmitter and the
base station are controlled using information on its
own states only, the strategies are decentralized and
denoted by mx(t) and vy(t), where x ∈ - and y ∈ =. In
this case, process (1) is determined using the rule

(3)
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Since U(t) is determined by the current state of
controlled process Z(t) with disregard of the preceding
evolution U is a Markov control. In addition, Z(t)
remains to be a Markov process but its generator is
given by a different linear mapping:

Note that mx(t) and vy(t) must be replaced by mz(t)
and vz(t), respectively, when the decentralized strategy
is applied in the above representation.

We formulate the optimization problem.
As was mentioned, the optimization of the queuing

system under study is aimed at the minimization of the
number of lost packets at finite interval [0, T]. A
packet is lost by the transmitter in the case of overflow.
Thus, the objective functional is represented as

(4)

The total service time can be characterized by

(5)

In the particular case, when the corresponding
processes are stationary and ergodic (see §5.8 in [18]
for details), we have the Little’s law:

Average sojourn time = Average number 
of units in the system/Arrival rate.

Relationship (5) corresponds to this formula with
allowance for the fact that the space and time averag-
ing must be used for the nonstationary system and the
arrival rate must be multiplied by the probability of the
absence of losses taking into account thinning of the
input f low.

The functional that characterizes the energy con-
sumption of the transmitter is given by

(6)

Such an expression can easily be interpreted on the
assumption that the power consumption of the server
of transmitter is proportional to rate μ.

Thus, the optimal control problem is represented as

(7)

where  and  are the given upper bounds for the total
service time and energy consumption.
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Note that (7) is the optimal control problem with
complete information on the network. Thus, the optimal
control  is determined by a centralized strategy.

Below, we present detailed formulation of the
optimization problem for a class of decentralized
strategies.

4. OPTIMAL CONTROL WITH RESPECT 
TO THE AUGMENTED CRITERION

The following equivalent representation is possible
for optimization problem with complete data (7):

(8)

Here, J1[U] and J2[U] are integral functionals that
contain the above bounds:

(9)

(10)

First, we consider unconstrained optimization of
the augmented functional:

(11)

where J[U] = col[J0[U], J1[U], J2[U]] is the vector cri-
terion, λ = col[λ0, λ1, λ2] is the vector of nonnegative
coefficients, and U is taken from the control class with
complete data 8.

Below, the solution of problem (11) is considered as
a preliminary stage for the subsequent synthesis of the
optimal control subject to constraints (8). However, it
is expedient to determine strategies that are optimal in
the problem without constraints, since such an
approach allows preliminary analysis of the sensitivity
with respect to weight coefficients λl.

Each functional  can be represented as an inte-
gral of mathematical expectation. Thus, the same rep-
resentation must be valid for the augmented func-
tional:

(12)

provided that appropriate functions g(t, z, u) are cho-
sen. Such a functional is represented as

(13)

with allowance for the fact that U(t) is the control
determined by strategies mz(t) and vz(t) in accordance
with expression (2), πz(t) = P{Z(t) = z} is the state
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probability, and functions fl, z (t, m, v) at z = (x, y) are
given by

(14)

The optimal predictable control of the Markov
process with a finite number of states can be con-
structed using the method developed in [15]. This
control is Markov and provides an optimal solution for
the class of controls U ∈  (expression (2)).

For the construction of the optimal control with
respect to the augmented criterion

(15)

the following procedures must be implemented.
(i) The integral representation must be used for the

minimized functional

for constant control , where u is an arbitrary
point from the set of values of control action .

(ii) Function  with values from

 must be determined:

(16)

(iii) Parametric problem of optimization must be
solved:

(17)

(iv) Solution  must be
obtained for the dynamic programming equation:

(18)

Then, the desired control and optimal functional
are determined using the rule

(19)

We present expressions for function
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Figure 1 shows possible transitions from the given state (x, y). The corresponding expressions for function
 are written as

For brevity, we omit time dependences of α(t).

To determine the optimal strategy, we represent
 as a function of variables m and v

and use notation “…” for the dependence on the
remaining variables:

(21)

Then desired optimal strategy (17) is represented as

(22)

where  is the notation for the solution of the
minimization problem

(23)

It is parametrized using constants a and b and has the
following solution:

(24)

Then, theorem 3 of [15] can be used to obtain the
following result.

Theorem 1. The Cauchy problem for the system of
ordinary differential equations (18) has single solution

 that coincides with the Bellman
function, so that

where g(t, z, u) is the function from (12).
In particular, the optimum for problem (11) is given by

where π(0) is the initial distribution of the process Z(t) =
(X(t), Y(t)), t ∈ [0, T].

The optimal control in problem (11) is constructed in
accordance with expressions (19) and (22):

where MV(a; b) is given by (24).

The structure of the above control
 can be interpreted as follows.
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the base station. If a ≤ 0, the packet sending must be
preferred to packet storage and, in accordance with
expression (24), optimal acceptance probability ϑ(t) is
assumed to be equal to the upper bound . When a > 0,
a packet must be stored at the transmitter, so that
acceptance probability is minimized ϑ(t) = v.

For optimal strategy μ(t), we choose between alter-
natives m and  using comparison of parameter a
multiplied by acceptance probability ϑ(t) and coeffi-
cient λ2 that determines the importance of limitation
on energy consumption. When aϑ(t) + λ2 ≥ 0, the
energy saving is more important than the costs related
to the packet storage at the transmitter. Thus, the ser-
vice rate is minimized: μ(t) = m. If aϑ(t) + λ2 < 0, the
packet sending is more important than the energy con-
sumption and we have μ(t) = .

5. SYNTHESIS OF CONTROL 
IN THE PROBLEM WITH CONSTRAINTS
We consider problem (8) of the minimization of

functional J0[U] on the control class with complete data
8 in the presence of constraints Jl[U] ≤ 0, l = 1, 2.

For the construction of the optimal control in this
problem, we employ the procedure of [15], which
involves the following stages.
(i) The constrained problem must be formulated as
the equivalent minimax problem for the augmented
criterion

(25)

where Λ is an appropriate convex compact set that
contains coefficient vectors  with
nonnegative coordinates.
(ii) The following dual problem must be solved:

(26)

(iii) The desired control is the control that is optimal
with respect to the augmented functional given the
found coefficient vector, so that .

Note that minimax formulation (25) is equivalent
to the constrained problem if operation “max” is
changed by “sup” and set Λ contains arbitrary vectors
represented as  , λ1 ≥ 0, and λ2 ≥ 0. Set
Λ is bounded if any vector  that satisfies the Kuhn–
Tucker conditions belongs to the set. The results of
[17] show that it is sufficient to determine control

 on which the Slater condition is satisfied
(Jl[Uo] < 0, l = 1, 2) and assume that
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Dual problem (26) is a convex program. Following
the approach of [17], we solve the problem using the
conditional gradient method [19, 22] or quasi-Newton
algorithm [20] adapted for a box-constrained optimi-
zation.

For substantiation of the last step, it suffices to
show that optimal control  continuously
depends on coefficient vector λ (see theorem 4 of
[15]). However, expressions (22)–(24) cause jumps in
optimal service rate  and acceptance probability 
when the corresponding coefficients pass through
zero. Thus, the continuous dependence of optimal
strategy  on λ cannot be guaranteed.

Nevertheless, the application of the above proce-
dure (i)–(iii) is possible due to transition to regular-
ized minimax problem [21]:

(28)

where Σε[U] is the stabilizing functional

(29)

and ε1 > 0 and ε2 > 0 are the regularization parameters.
We choose integral stabilizer by analogy with func-
tional  and with allowance for the fact that
minimum of Σε[U] is reached at constant strategy

 providing the minimum energy consumption
and the maximum acceptance probability.

The optimal control in the regularized uncon-
strained problem

(30)

is constructed using theorem 1 with allowance for the
fact that function  that determines the right-
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Fig. 1. Transitions between the states of system.
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hand side of dynamic programming equation (18)
must be changed by the regularized version

(31)

and the optimal strategy

(32)

is uniquely determined from the solution to the prob-
lem that is similar to (23)

We can easily demonstrate that the solution to such a

problem is pair ( ), such that

(33)

where . Using notation

 for pair ( ), we represent strategy (32) as

(34)

Owing to the regularization, optimal strategy (34)
continuously depends on λ and, hence, scheme (i)–(iii)
really leads to the solution of minimax problem (28).
Moreover, dual problem

(35)

is a smooth convex program owing to uniqueness of
optimal control (30).

Below, we formulate the theorem that determines
the properties of regularized problem and its relation
to the original problem of the optimal control with
constraints.

Theorem 2. We assume that control Uo ∈ 8 satisfies

the Slater condition  < 0 (l = 1, 2) and set Λ is
determined with the aid of rule (27) using constants c1

and c2 such that .

Then, the following statements are valid.
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(i) The optimal control in the regularized uncon-
strained problem (30) is calculated as

 using strategy (34)

and function  determined from the solution to the
Cauchy problem

(36)

where  is the function given by expression (31).

(ii) Objective function in dual problem (35) given by
 is the convex differentiable

function with gradient

(37)

(iii) Control  that corresponds to solution 

of regularized dual problem (35) obeys constraints (8)
and satisfies inequalities

(38)

where  is the optimal control for the original problem
with constraints (8).

6. OPTIMIZATION ON THE CLASS 
OF DECENTRALIZED STRATEGIES

We consider the control problem in the absence of
complete information on the state of the network. For
this purpose, we represent optimization expression (7)

for class 8d of decentralized controls (3) as

(39)

where functionals J1[U] and J2[U] are given by expres-
sions (9) and (10).

In accordance with expression (3), any control U(t)
from 8d is determined by strategy

(40)

where mx(t) and vy(t) are the service rate at the trans-

mitter and packet acceptance probability at the base
station for the system in state (x, y) at moment t. We

assume that strategy  forms a piecewise-continu-

ous function determined on interval [0, T] with values

from set . We use notation _ for

such a class of functions.

By analogy with expression (13), each functional
Jl[U] is represented as

(41)
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Here, distribution of the states of network

 and strategy (40) serve as arguments.

Then, we may proceed from expression (39) to the
problem of optimal control

(42)

for deterministic system

(43)

that is considered on [0, T] with fixed initial condition
πo and piecewise-continuous controls (40).

The shortened representation of system of differen-
tial equations (43) is written as

(44)

using notation  that determines a linear operator

in space  at fixed t ∈ [0, T] and v ∈ U. Evidently,

 coincides with the generator of the controlled

Markov process that corresponds to strategy .

A similar notation must be used for short-form
representation of the vector consisting of function-
als (41)

(45)

At fixed arguments t ∈ [0, T] and v ∈ U,   is a

linear operator from  to .

The maximum principle for deterministic systems
makes it possible to formulate the necessary condition
for optimality for the class of controlled queuing net-
works under study.

Theorem 3. If piecewise-continuous strategy

determines an optimal solution 

to the control problem with incomplete information (39),
there exist vector and function

that are not simultaneously zeros

such that
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(i) at each moment t

(46)

where function  is represented as

(47)

and pair π(t), φ(t) forms a solution to two-point bound-
ary-value problem

(48)

(ii) the complementary slackness condition is satisfied

(49)

We consider the problem of minimization (46). For

brevity, we use variables π, ϕ ∈  instead of functions

π(t) and ϕ(t). Given  and

notation (16), the function that is minimized in [46] is
written as

Using expression (21), we represent this relationship as

Unfortunately, explicit minimization of this
expression is impossible. Its bilinear structure shows
that the desired minimum with respect to v is reached
at the vertexes of parallelepiped U. Therefore, the
direct minimization can be implemented only at a rel-
atively small number of states. In addition, probabili-

ties  and dual variables  are needed to

determine u(t). Therefore, two-point boundary-value
problem (48) cannot be reduced to the Cauchy prob-
lems. An additional obstacle for the application of Theo-
rem 3 is related to unguaranteed positivity of coefficient
λ0. As distinct from the dynamic programming equa-

tion (Theorem 1), conditions (46)–(49) that are deter-
mined by the maximum principle do not allow formula-
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tion of a practical algorithm for solving the optimal
control problem with constraints.

For the synthesis of a numerical method for opti-
mization, we consider a class of stationary controls

(50)

where strategy u belongs to set U. Notation S is used
for the class of stationary controls. With allowance for
the fact that u represents a point in a finite-dimen-
sional space, we use notation Jl(u) for functional in
expression (41) and omit the dependence on distribu-
tion π(t) that is unambiguously determined using the
system of differential equations

(51)

For the numerical solution of the problem

(52)

we use the augmented Lagrangian method [19, 22].
The augmented Lagrangian for problem (52) is writ-
ten as

where λ = col[1, λ1, λ2] is the vector of Lagrange mul-

tipliers, ε1 and ε2 are the regularization parameters,

and  denotes positive part.

The numerical method involves sequential applica-
tion of the gradient descent (ascent) with respect to
variables u and λ, respectively. However, a step of the
gradient method with respect to strategy u is changed
in the below algorithm by the numerical solution of
the minimization problem. The description of a
detailed implementation of such an approach follows
the formulation of the algorithm.

Algorithm 1. Error level δλ > 0 and a rate of a

decrease in the norm of gradient δN ∈ (0, 1) must be

determined. The initial conditions must also be deter-

mined for regularization parameters ,  > 0,

norm of gradient , and strategy u(0) =

 (where mk = m and vq = ),

vector of multipliers λ(0) = col[1, 0, 0], and iteration
number s = 0.

(i) Strategy u(s + 1) is obtained as a solution to the
problem

(53)

where 
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(ii) A gradient step must be performed with respect
to λ:

(iii) The norm of gradient must be calculated at the
given point:

where the partial derivatives are represented as

(iv) The iterations must be terminated if the stop-

ping criterion  is satisfied.

(v) The regularization parameters must be cor-
rected:

(vi) Number s must be increased by unity and the
process must be continued from step (i).

The solution to auxiliary problem (53) is found
with the aid of the quasi-Newton algorithm of [20]
adapted to the optimization of a smooth convex func-
tion on the coordinate parallelepiped. For the imple-
mentation of the algorithm, we must calculate gradi-

ent  the coordinates of which are written as

The expressions for partial derivatives of function-
als Jl(u), (l = 0, 1, 2) with respect to strategies mk and

vq (k ∈ - and q ∈ =) are obtained from (14):
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where distribution  is determined from

system (51) and corresponds to strategy

.

The differentiation of the equations of system (51)
with respect to control parameters enables us to sup-
plement the differential system with new equations for
partial derivatives of state probabilities with respect to
service rate mk

and acceptance probability vq

The resulting expressions are sufficient for the
numerical solution of auxiliary problem (53).

7. OPTIMIZATION OF DATA TRANSMISSION 
IN TWO-AGENT ROBOTIC SYSTEM

We assume that data reception, transmission, and
processing are performed over time T in two-agent
robotic system consisting of an UAV’s transmitter and
a receiver of the base station. The input data f low is
nonstationary, and its rate is presented in Fig. 2. The
parameters of the data-transmission network are as
follows:

where A is the expected number of packets in the input
flow.

The number of states for the network under study is
(M + 1) (N + 1) = 176. To avoid localization of the sta-
tionary distribution on the states that correspond to
the overflow of the base station, we use the service rate
that is higher than the input f low intensity: ν > α(t).

We consider stationary strategy :

(54)
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Only two variants are implemented using (54), so that
the strategy is called the two-point strategy.

The functionals that describe the total processing
time and energy consumption of the UAV’s transmit-
ter when the two-point strategy is applied are

We assume that the bounds  are greater

about 1%:

When two-point strategy  is employed, the aver-
age number of lost packets and functionals (9) and
(10) are

Theorem 2 is used to find strategy

 that is optimal

on the class of centralized nonstationary controls. In
the solution of the dual problem, we use the quasi-
Newton algorithm (see [17] for details).

The optimal probability of the packet acceptance is

unity:  = 1. Figure 3 presents time-averaged opti-

mal service rate . It is seen that an increase in the

number of packets x in the queuing system leads to an

increase in service rate  and service rate decreases

to the minimum allowed level in the vicinity of the
overflow of the base station.

To illustrate the evolution of strategy , we

present results of averaging over states of the two sta-
tions (Figs. 4 and 5):
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Fig. 2. Arrival rate α(t).
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Figure 4 shows that changes of strategy  fol-

low changes of arrival rate α(t). First,  increases

to the upper bound  and the rate of an increase is

higher for more loaded states x. Then, the optimal ser-

vice rate remains almost constant to the moment when

the mode of the input f low is changed. Finally, the rate

exhibits a jump in decrease to the lower bound m. For

more loaded states x, the transition to the minimum

level is delayed.

( ),ˆ x ym t

( ),ˆ x ym t
m

Figure 5 proves the dependence of strategy 

on the evolution of the input f low. Here, we also
observe three intervals and the corresponding levels of

service rate : maximum, intermediate, and

minimum. However, a different dependence on the
load is obtained for the base station. For the three
most loaded states y, the optimal service rate is signifi-
cantly less than the rate for the remaining states.

Note that state probabilities  affect the plots

of Figs. 4 and 5. Figures 6 and 7 show marginal distri-
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Fig. 3. Time-averaged optimal service rate .
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butions that correspond to optimal strategy  for

the transmitter and base station:

Solution  of the optimal

control problem on the class of stationary decentral-

ized strategies is numerically obtained with the aid of

Algorithm 1. As in the case of the centralized control,

the optimal strategy of the acceptance probability is

= 1.

( )ˆ tu

( ) ( ) ( ) ( )
∈ ∈

π = π π = π∑ ∑, ,ˆ ˆ ˆ ˆ, .
X Y
x x y y x y

y x

t t t t
= -

{ }= ∈ ∈� � �, : ,x ym x yu v - =

� yv

Figure 8 shows the dependence of the optimal ser-

vice rate  on the load of transmitter x. Note similar-

ity to two-point strategy (54) except for difference at

x = 7. In comparison with the strategy based on the

complete information, decentralized strategy 

exhibits a significantly more active reaction to varia-

tions in the load of the transmitter in the absence of

data on the state of the base station.

Note that the two-point strategy serves as the initial

approximation in Algorithm 1. To verify the insensitiv-

ity of the iterative procedure to the starting point, we

consider alternative variants of the initial approxima-

� xm

� xm

Fig. 5. Optimal service rate averaged over the state of the transmitter  .
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tion. The calculations yield almost identical results, so

that optimal decentralized strategy  is verified.

Figures 9 and 10 present marginal distributions of
the queuing system states for the transmitter and base

station under optimal decentralized control . The
high-load states are the most probable states for the
transmitter, so that the scenario substantially differs

from the scenario in which we employ strategy 

� xm

�u

( ),ˆ x ym t

with complete information (cf. with Fig. 6). However,
the load distributions for the base station are close to
each other (cf. with Fig. 7).

Within class (50), optimal decentralized strategy 
can be compared with the following averaged strategy:

(55)

where averaging (with respect to time and state of the
base system) is performed for optimal service rate

. Such an approach leads to the decentralized

strategy of Fig. 11. Almost constant service rate 

crucially differs from optimal strategy  (Fig. 8).

Table 1 presents functionals for four controls: two-

point strategy  defined in (54), optimal strategy 

constructed in accordance with Theorem 2, optimal

decentralized strategy  resulting from the application

of Algorithm 1, and averaged strategy  obtained by
the rule (55).

Both numerically synthesized strategies  and 

satisfy the given constraints. Note that the energy

�u
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∫
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Fig. 7. State probabilities for the base station  given the optimal centralized control .
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Table 1. Functionals for several controls

u J0(u) J1(u) J2(u) S(u) E(u)

8.3402 –9.1331 –1.5936 5.7685 159.3577

3.5164 –424.0999 –0.0078 3.2267 160.9435

7.3230 –30.8468 –0.0007 5.6326 160.9506

1.0189 –494.6514 11.6171 2.8400 172.5684

Constraints: 0 0 5.8262 160.9513

ou
û
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resources are almost exhausted:  and

. However, the constraints for the sojourn

time of a packet in the network are satisfied with a

large margin, since we have  and .

With respect to the criterion of the minimum loss

number J0(u), optimal strategy  that employs com-

plete data is significantly better than two-point strat-

egy  and decentralized strategy  that is optimal for

its class. Averaged strategy  makes it possible to min-

imize the number of lost packets but the constraints on

energy consumption are substantially violated:

.
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Fig. 9. Probabilities of states of the transmitter  for the optimal decentralized control .
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Fig. 10. Probabilities of states of the base station  for the optimal decentralized control .
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Fig. 11. Service rate  for averaged strategy.
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Finally, we compare the results with the conclu-
sions drawn in [3] for a similar model. In accordance
with the results of [3], the acceptance probability must
not be identically equal to unity (see above): it must
decrease to the lower bound when the base station is
substantially loaded. Such a difference is caused by a
different choice of functionals. Indeed, in [3] two
functionals are used to describe the sojourn time of a
packet in the transmitter and base station. For the
optimal strategies of [3], the constraint on the average
total service time in the first station is satisfied with
some margin but the time constraint for the second
station becomes tight due to active control of the
acceptance probability. In the model under study,
these two constraints are combined and the network is
controlled using only service rate in the first station.

8. CONCLUSIONS

We have considered a controlled two-phase queu-
ing system that contains two single-channel stations
with finite buffers and allows blocking of the first
server. Such a queuing system is described with the aid
of the Markov process that is optimized on a finite
time interval using minimization of the average num-
ber of lost packets in the presence of constraints on
total service time and energy consumption of the first
station. We have developed two methods to determine
optimal controls on the class of centralized and decen-
tralized strategies. Explicit expressions have been
derived for the optimal service rate and acceptance
probability using the augmented criterion over the
class of centralized strategies. The constrained optimi-
zation is performed with the aid of dual optimization
method. The necessary conditions for optimality are
obtained for the decentralized control. The optimiza-
tion of the decentralized control is implemented on
the class of stationary strategies using an original iter-
ative procedure. The results of numerical experiment
show typical optimal strategies for the data transmis-
sion control problem in two-agent robotic system.
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