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INTRODUCTION
Problems of analysis of magnetron injection guns

were discussed in [1–5] both in the context of synthe-
sis [1–3] and with the use of methods for numerical
integration of partial differential beam equations. The
model problem of a planar magnetron with spatial tra-
jectories in the presence of an arbitrary orientation of
the magnetic field at the cathode is examined in [1],
and studies [2–5] are focused on narrow tubular
fluxes. The authors of [1–3] turned to the known
exact solution with the multiplicative separation of
variables in spherical coordinates, which characterizes
a f lux from a cone-type cathode in an inhomogeneous
magnetic field (in particular, in a homogeneous field
directed along the cone axis) [6–8], and used it to
examine scenarios with emission limited by a spatial
charge and temperature.

Since the theory of tubular electron beams [9, 10]
in the ρ-mode of emission does not allow for the pos-
sibility that the magnetic field can be directed at an
angle to the cathode, it is not applicable to magnetron
injection guns. However, these restrictions are lifted
(even for relativistic f luxes) in the case of Т-mode
emission.

The geometrized tubular beam theory, which is free
from the limitations of the paraxial approach, is used
in [11] to construct a combined model of an axially
symmetric magnetron injection gun with a wide emis-
sion belt in the ρ-mode of emission. The first approx-
imation of the theory with the detailed characteriza-
tion of the near-cathode region with the second deriv-
ative of the cathode curvature on the beam axis and
the third derivative of the emission current density
taken into account is used to calculate trajectories (the
most conservative model elements).

Purely numerical methods are used in the recent
studies of a planar gyrotron [12–14] to calculate the

electron-optical system. A model with the detailed
characterization of the near-cathode region with the
second derivative of the cathode curvature on the
beam axis and the third derivative of the electrical field
normal to the cathode taken into account (the
Т-mode emission) is constructed in [15] based on the
geometrized theory of planar electron f luxes in
the second approximation. The geometrized approach
has a certain advantage in accuracy over the paraxial
approximation used in the present study (see [16]). At
the same time, the model based on the paraxial theory
of curved ribbon beams, which is a degenerate axially
symmetric version of the theory of narrow annular
fluxes, deserves attention owing to its simplicity com-
bined with an adequate description of the near-cath-
ode region, which is lacking in the majority of trajec-
tory analysis programs.

In addition to regularization of asymptotic series
near a curved cathode, complete singularity
extraction, which allows one to use the method of
multiple scales to construct the simplest solution in
the analysis of shaping electrodes, is performed in the
present study. Relativistic f luxes with their basic cur-
rent tube being an internal surface with zero self-mag-
netic field are considered.

1. PARAXIAL EQUATIONS
OF A CURVED RIBBON BEAM

Let the directrix of a cylindrical surface (the basic
current tube, i.e., the beam axis) with arc length l be
defined by parametric equations

(1)

We introduce a curvilinear coordinate system l, s, x
(s is the distance along the normal to the axis, and x is

( ) ( )= =0 0, .y Y l z Z l
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the cyclic Cartesian coordinate) that is related to Car-
tesian coordinates y, z as

(2)

Axis curvature  is written as

(3)

The equations of a relativistic curved ribbon beam
with an inhomogeneous distribution of spatial charge
density  in the cross section are derived in [10]. The
thermal emission conditions can be satisfied only by
beams with similar current tubes  character-
ized by the following equations:

(4)

Equations (4) and the subsequent relationships are
written in the relativistic normalization (the speed of
light is the characteristic velocity) that excludes all
physical constants of the adopted system of units. The
following designations of on-axis quantities are
adopted: U is the potential;   are the velocity com-
ponents;   are the components of momentum 
which tend to   in the nonrelativistic limit (in all
other cases, a tilde marks the terms vanishing at non-
relativistic velocities);   and  are the compo-
nents of magnetic field intensity  and  is the nor-
mal electrical field on the axis.

The f lux parameters satisfy the following relation-
ships:

(5)

Here, ϕ is the potential, and J is the emission current
density that is constant in the case of similar current
tubes.
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2. REGULARIZATION 
OF PARAXIAL EXPANSIONS

Let us introduce deformed longitudinal coordinate ζ:

(6)

which is used to define a curved emitting surface:

(7)

The solution in the near-cathode region in the case
of Т-mode emission can be constructed in the form of
expansions in half-integer powers of the longitudinal
coordinate  [10]:

(8)

The regularization requirements [17] (the lack of
increase in the singularity order of the asymptotic
series terms) can be reduced in this case to the require-
ment that the functions at s and  in formulas (5)
should behave near the cathode in the same way as the
first terms of these series. The couplings to coefficients
from (8) that are involved in regularization and follow
from paraxial equation (4), the energy integral, and
the current conservation equation in (5) should be
added to the corresponding relationships.

The following is then obtained:
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(9)

where coefficients   in the on-axis potential
expansion are arbitrary parameters and  is the on-
axis cathode curvature. Regularization governs coeffi-
cients up to and including    and . Subse-
quent coefficients are defined by antiparaxial expan-
sions of the paraxial beam equations.

Expansions (9) allow one to move away from sin-
gularity at  and start integrating Eq. (4), which
characterizes the beam shape, in the regular domain.

Coefficient  can be taken equal to unity so as to
make parameter ξ determine the initial beam thick-
ness: 

3. THE COMPLETE SINGULARITY 
EXTRACTION

Regularization ensures the lack of increase in the
singularity order of the asymptotic series for the flux
parameters, but does not lead to complete singularity
extraction. In the case of the Т-mode emission, the sin-
gularity is characterized by a two-term formula with
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regular functions serving as coefficients at the fractional
power of l, which sets the point of branching [18]:

(10)

On-axis magnetic field  is a regular function.

Momentum components   are written as

(11)

The following relationships are derived from the
energy integral:
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It follows from the current conservation equation
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The external magnetic field is  by virtue of
the regularization conditions, and self-field is lacking
owing to the choice of the beam axis; therefore,

 In view of this, the following is obtained for
field  and effective background N:

(16)

Inserting expressions (15) and (16) into Eq. (14),

we obtain two relationships for  
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which can be solved for these differential operators.
The terms of the order of  which compensate each
other by virtue of asymptotics (9), will be present in
the right-hand sides of equations obtained this way.
Since regular functions   are written as
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initial conditions in integration of equations with 
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4. THE GOVERNING FUNCTIONS 
OF THE MODEL

The beam axis shape and the distributions of
potential and the magnetic field components on this
axis are governing functions of the model. The first
two functions, which have a singularity at the cathode,
require special consideration.

The beam axis shown in Fig. 1 is plotted using the
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the determination of the field gradient at the cathode
in terms of the product 

(24)

The formula characterizing the basic current tube
configuration and taking asymptotics (21) into
account can be written as

(25)

Starting from   the coefficients of polynomi-
als Р and S are arbitrary governing parameters.
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SYROVOI

It is known that the zero equipotential of the parax-
ial solution requires the maximum correction. The
curve  can be modified in considering the prob-
lem locally in the near-cathode region. The transverse
gradients of field Е are not included into the paraxial
theory, but this value can be found by calculating the
potential at the beam boundary:

(31)

The formula for the normal electrical field at the
flux boundary follows from expression (31):

(32)

Note that formula (32) contains a potential expansion
coefficient with a relatively high index.

It appears reasonable to use the exact results of the
theory of antiparaxial expansions, which define the
local equation of the zero equipotential in the follow-
ing way [19]:

(33)
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Using (23), we obtain the following for field  at
the periphery of the cathode:

(34)

An alternative way to calculate the shaping elec-
trodes involves complete singularity extraction (Sec-
tion 2) and the zeroth approximation of the method of
multiple scales [10]. Let us preserve the terms of the
order of  in formula (29) and regroup them:

(35)

We then introduce deformed longitudinal coordi-
nate  and transverse coordinate η:

(36)

Having expanded function  in (35) with the

preserved terms of the order of  and taking into
account the fact that the diverging fragment in the first
square bracket represents the first terms of expansion
of aggregate  we have

(37)

Functions   were regularized ear-
lier; with “fast” coordinate z introduced for singularity
characterization and “slow” coordinate Z for regular
functions, the on-axis potential, by virtue of (10),
takes the form that allows for the analytical continua-
tion of just the “fast” power factor:

(38)

The above formulas are valid at a sufficient dis-
tance of the beam ends. Proposals on shaping the end
region are discussed in [15].

In many scenarios, an ellipse providing a fill factor
of π/4 ≈ 0.785 is an acceptable approximation of a
rectangular contour. The initial contour
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Fig. 2. Configuration of a beam from a concave cylindrical
cathode.
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is transformed into an ellipse owing to the drift veloc-
ity and compression along axis s:

(40)

Under such gradients that are justified in the parax-
ial approximation, a beam in the l, s,  system can be
regarded as a quasi-cylinder. The solution for this
quasi-cylinder in the Laplace domain is given by

(41)

where  is the potential in the beam.
Curvilinear coordinates u,  are related to  s as

follows:

(42)

CONCLUSIONS
The presented model of an electron-optical system

of a planar gyrotron with the Т-mode emission is sim-
pler than the model based on the geometrized
approach [15]. The higher complexity of the latter
model translates into a potentially more accurate and
detailed description (especially in constructing the
second approximation of the theory). Both models
serve as alternatives to the use of purely numerical
methods in problem analysis [12–14], are based on the
integration of ordinary equations, and are free from
problems related to the inclusion of near-cathode sin-
gularity.
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