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INTRODUCTION

Modern methods of speech enhancement rely on
the optimization of metrics (such the quality and intel�
ligibility [1]) well describing the subjective perception of
reconstructed speech signals. Telecommunication sys�
tems are examples of applications whose work requires
reliable algorithms providing high intelligibility of
speech with reduced noise. The speech enhancement is
usually formulated as the problem of estimating the
magnitude spectrum of clean speech signal from the
observed signal. There are several successful estimators
for speech enhancement, among which it is worth men�
tioning the following ones: maximum likelihood (ML)
[1–3], minimum mean�squared error (MMSE) [4–6],
logarithmic minimum mean�squared error (log�
MMSE) [7], and maximum a posteriori probability
(MAP) [8]. These estimators rely on several assump�
tions about the statistical properties of speech signals
and noise. For example, it is common practice to
assume an asymptotic behavior of the statistical charac�
teristics of speech signals and a known distribution of
the speech signal. In real applications, the local distri�
bution density of speech signals and noise can change
with time. Therefore, the existing estimators can lead to
unsatisfactory results when processing real speech sig�
nals on a nonuniform environmental background.
Thus, the design of locally adaptive robust estimators
for speech enhancement is desirable.

Digital signal processing widely employs filters
based on the calculation of rank�order statistics [9–11].
Such filters are robust to the heavy tailed noise and

preserve fine details and rapid changes in the signal.
These properties of nonlinear filters are useful in the
speech enhancement for the suppression of undesir�
able noise while preserving the intelligibility of speech.
Recently, a locally adaptive nonlinear filtering for
speech processing was proposed [12], which is capable
of reducing the additive noise and preserving the intel�
ligibility of speech almost without artifacts such as a
“musical” noise. However, the obtained estimator
does not take into account the metrics describing the
subjective perception of speech signals by a man
[13, 14]. In the present work, we propose the use of
rank�order statistics for improvement of the existing
estimators of speech processing taking into account
the subjective perception of speech signals.

Let a discrete function f(n) =  be an
input speech fragment of length N, the function s(n) is
the undistorted signal, and d(n) is an additive noise
with the zero mean. In the frequency domain, the
observed signal can be represented as

(1)

where Fk, Sk, and Dk are the magnitudes of the discrete
Fourier spectra of the signals f(n), s(n), and d(n),

respectively, and   and  are the phases of the
observed, undistorted signals and the noise, respec�
tively. After obtaining an estimate of the spectrum of
the undistorted signal from the observed signal, the
reconstructed spectrum of the signal is calculated as
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The existing estimators of speech spectrum pre�
sume that the Fourier coefficients (the real and imag�
inary parts) of speech signals and noise have zero
means, and the signals are independent Gaussian ran�
dom processes quasi�stationary in the interval of 20–
40 milliseconds. In real applications, these assump�
tions may be wrong, e.g., when the speech signal is dis�
torted by a non�Gaussian or nonstationary noise. In
this work, we propose a robust estimator based on cal�
culation of rank�order statistics for speech enhance�
ment. The proposed estimates can be adapted to non�
stationary features of noised speech signals. They can
also enhance speech without loss of intelligibility and
without introducing artifacts to the signal.

The structure of the paper is as follows. Section 1
outlines the locally adaptive speech processing with
the use of rank�order statistics. Section 2 describes the
proposed algorithm for speech enhancement. Section 3
presents experimental results obtained with the help of
the proposed approach. These results are compared in
objective criteria with the results obtained by the
known methods. The final section presents our con�
clusions.

1. SPEECH ENHANCEMENT 
WITH LOCAL SIGNAL PROCESSING

The design of rank�order filters is usually per�
formed in two stages: at first, local uniform neighbor�
hoods are singled out (the structural approach) and,
then, estimates of the undistorted signal (estimators)
are constructed [10, 11]. The locally adaptive signal
processing is performed in a sliding window. In the first
step, homogeneous neighborhoods in a sliding win�
dow—the desired structures of the signal in a win�
dow—are defined. Then, on the basis of the defined
elements of the local neighborhoods, an estimate of

the undistorted signal for the central element of the
window with the chosen criterion is constructed.
Figure 1 shows an example of a speech signal and con�
struction of local neighborhoods based on rank�order
statistics.

For the processed speech signal, the vector of a
sliding window w consisting of S elements can be rep�
resented as follows:

(2)

where i is the index of the central element within the
current window and T denotes transposition. The vari�
ation row v(r) is an ordered sequence of elements of
the vector w satisfying the following condition: v(1) ≤
v(2) ≤ ... ≤ v(S) . The quantities v(r) and r(v) are the
rth rank�order statistics and the rank of the quantity v,
respectively [10]. It should be noted that the rank�
order statistics and the rank can be calculated from the
local histogram of the signal {h(q), q = 0, ..., Q – 1}
inside the sliding window as r(v) =  where

Q is the number of signal quantization levels.
There are several variants of constructing local

neighborhoods based on rank�order statistics [10].
One of the most popular neighborhoods for signal pro�
cessing is the EV�neighborhood. This neighborhood is
the subset of elements of the vector w whose values
deviate from the central element w(i) at least by the
specified values –ε

v
 and +ε

v
 as follows:

(3)

where v is the vector Sa × 1 (Sa ≤ S) whose elements
form the subset of element of the vector w. Estimators
for speech enhancement are constructed using popu�
lar methods of statistical estimation [3]. For example,
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Fig. 1. Calculation of locally adaptive neighborhoods: (a) sliding window and (b) variation row and local neighborhoods.
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in [4], optimal estimates for the spectrum magnitude
of undistorted speech signal with respect to the mean�
squared error and logarithmic mean�squared error were
proposed. These estimators usually give good results for
the suppression of a stationary noise in a speech signal.
On the other hand, the use of these estimators deterio�
rates the subjective quality of speech signal, because the
reconstructed signal contains an annoying “musical”
noise, which can harass the listener.

The MMSE estimator of the spectrum magnitude
of undistorted speech signal [4] can be written as

(4)

where I0 and I1 are the modified Bessel functions of the
zero and first orders, respectively, and βk is calculated as

(5)

where ξk and λk are a priori and a posteriori signal�to�
noise ratios (SNR), given by

(6)

and

(7)

Here,  and  are the variances of the undistorted
signal and noise, respectively. In the time domain, the
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central element of the sliding window of the undis�
torted signal can be calculated as follows:

(8)

where a ∈ [0, 1] is a weight coefficient and yk(i) is
obtained from

(9)

where μs is the mean of the reconstructed signal and
s(i) is the central element of the sliding window after
applying the estimate of the minimum mean�squared
error.

In this work, we propose the method for processing
of speech signals by modifying the existing estimators
to enhance speech while preserving the intelligibility
and without introducing artificial sounds.

2. THE PROPOSED ALGORITHM

In this section, we describe the proposed algorithm
for speech enhancement by locally adaptive signal
processing. The block diagram of the algorithm is pre�
sented in Fig. 2, and its steps are detailed below.

Step 1. Read the initial input segment n0 with S ele�
ments in the absence of a speech signal.

Step 2. Read the initial input speech segment f(n)
with N elements and set i = 1.

Step 3. Create the vector of window w around the
ith noised element, using expression (2).

y i( ) ayk 1– i( )– 1 a–( )yk i( ),+

yk i( ) μs
λk

s

λk
s λk

d+
�������������� s i( ) μs–( ),+=

Sliding window

Central element Noisy signal

Move sliding window

Processed signal

Filtered neighborhood

Output

Estimate single element
using recursive filtering

Construct local
neighborhoods

using order�statistics

Neighborhood filtering
using ML or

MMSE estimator

......

...

......

...

Fig. 2. Block diagram of the proposed rank filtering.
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Step 4. Calculate the value of ε
v
 as follows [12]:

(10)

where Ω is the local SNR calculated by the formula

Ω =  and σf is the standard deviation of the

noise. The parameters a1 ≥ 1 and a2 ∈ (0, 1] take into
account a priori information on the spread of the
speech signal and fluctuation of noise.

Step 5. Construct EV�neighborhood v of the vector
w by expressions (3) and (10).

Step 6. Apply the estimate of the minimum mean�
squared error, using expression (4).

Step 7. Calculate the estimate of the input signal by
expressions (8) and (9). Set i = i + 1. If i ≤ Ni, then go
to Step 3, else go to Step 2.

The result of work of the algorithm is the signal
reconstructed with the optimal mean�squared esti�
mate of the undistorted signal and the locally adaptive
processing based on rank�order statistics.

3. EXPERIMENTAL RESULTS

In this section, we present experimental results
obtained by the proposed method. Numerous experi�
ments were performed for testing the quality of the
method. The results were compared with those
obtained by existing algorithms for speech enhance�
ment. We tested the classical maximum�likelihood

ε
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algorithm, denoted by ML [1–3], the minimum
mean�squared error algorithm, denoted by MMSE
[4], and the proposed algorithms based on the rank�
order statistics and estimators of the mean�squared
error and maximum likelihood, denoted as rank�
MMSE and rank�ML, respectively.

All the algorithms were tested on speech signals
distorted by two types of noise: the white normal noise
and automobile noise. The SNR tooks the values of
20, 15, and 10 dB. The considered algorithms were
tested using the IEEE data base [13]. This base con�
tains 600 speech sentences pronounced by male and
female speakers. The sentences in the data base are
phonetically balanced and have a relatively low pre�
dictability of the vocabulary context. The sentences
were recorded with the sampling rate of 8 kHz. The
quality of work of the algorithms was estimated using
the following metrics.

⎯The quality of speech is characterized by the Per�
ceptual Evaluation of Speech Quality (PESQ) [14];

⎯The intelligibility of speech is estimated by the
short�time objective intelligibility (STOI) [15];

⎯The noise suppression is characterized by the
useful source�to�interference ratio (SIR) [16];

⎯The addition of artifacts to the speech signal is
described by the useful source�to�artifact ratio
(SAR) [16].

Let us test the quality of the algorithms on a speech
signal distorted by an additive noise. The parameters
for the proposed algorithms are as follows: S = 121,
a1 = 2.0, a2 = 0.45, and a = 0.8. Figure 3 shows an
example of speech enhancement by the proposed
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Fig. 3. Example of enhancement of speech distorted by an additive Gaussian noise with SNR = 15 dB by the proposed algorithms:
(a) speech signals, (b) spectrogram of a noised signal, (c) spectrogram of the signal processes with the rank�ML algorithm, and
(d) spectrogram of the signal processes with the rank�MMSE algorithm.
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algorithms when the speech is distorted by an additive
noise with the SNR = 15 dB. In addition, Fig. 3 shows
spectrograms of the noised and processed signals.
Note how ε

v
 is adapted to the local variations in the

noised signal: when the local SNR is low, ε
v
 takes large

values. This means that, in this case, the proposed
algorithms perform more aggressive filtration than at
large SNR. Figure 4 presents the results of processing
of 600 distorted speech signals by the tested algorithms
with a 95% confidence in terms of the quality of
speech, intelligibility, noise suppression, and intro�
duction of artifacts. It should be noted that the pro�
posed rank�ML algorithm gives better results in the
quality of speech and noise suppression than the clas�
sical ML algorithm for all considered values of the
SNR. We can also see that the proposed rank�ML
algorithm outperforms all the tested algorithms with
respect to the SAR. The proposed rank�ML algorithm
outperforms the common algorithms in terms of the

perceptual quality of speech and the source�to�artifact
ratio for all considered values of the SNR. Moreover,
the rank�MMSE algorithm is the best one of all tested
algorithms in the intelligibility for all values of the
SNR. The classical MMSE algorithm suppresses noise
well due to introducing a substantial “musical” noise
(the worst values of the SAR).

Now let us analyze the quality of work of the speech
enhancement algorithms in an environment with
automobile noise. The parameters of the proposed
algorithms for this experiment were as follows: S = 65,
a1 = 2.0, a2 = 0.5, and a = 0.8. Figure 5 shows and
example of the enhancement of speech distorted by an
automobile noise with the SNR = 15 dB and the
spectrograms of the noisy and processed signals. Fig�
ure 6 presents the results of processing of 600 distorted
speech signals by the tested algorithms with a 95%
confidence in terms of the quality of speech, intelligi�
bility, noise suppression, and introduction of artifacts.

Fig. 4. Results of processing of speech distorted by an additive Gaussian noise with SNR = 15 dB by the proposed algorithms with
95% confidence in terms of (a) the perceptual evaluation of speech quality (PESQ), (b) short�time objective intelligibility (STOI),
(c) noise reduction (SIR), and (d) introduction of artifacts (SAR).
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Fig. 5. Example of enhancement of speech distorted by an automobile noise with SNR = 15 dB by the proposed algorithms:
(a) speech signals, (b) spectrogram of noised signal, (c) spectrogram of the signal processes with the rank�ML algorithm, and
(d) spectrogram of the signal processes with the rank�MMSE algorithm.
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It should be noted that the proposed rank�ML algo�
rithm provides a substantial enhancement of speech
with respect to the perceptual quality of speech and
noise suppression than the classical ML algorithm for
all considered values of the SNR. It should also be
noted that the noise suppression of the rank�ML algo�
rithm is similar to that of the classical MMSE algo�
rithm. The common ML algorithm is the worst with
respect to the perceptual quality of speech and noise
reduction among all tested algorithms. The proposed
rank�ML algorithm outperforms all the algorithms in
the perceptual quality of speech and noise suppression
for the SNR of 15 and 20 dB. The common MMSE
algorithm yields slightly better performance and noise
suppression when the speech signal is strongly noised
to the SNR = 10 dB. However, as in the previous
results with an additive noise, the MMSE algorithm
has the worst result among all tested algorithm in
terms of the SAR criterion.

CONCLUSIONS

In this paper, we have proposed new algorithms for
speech enhancement based on known estimates of
spectrum amplitudes of distorted signals and rank�
order statistics. The proposed estimators are easily
adapted to nonstationary characteristics of speech sig�
nals and background noise in real conditions. By com�
puter simulation, it was shown that the proposed algo�
rithms for speech enhancement outperform the classi�
cal methods in terms of objective criteria of quality.
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