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1. INTRODUCTION

Currently, the mathematical simulation and data
analysis are main methods for the design of complex
technical objects. The object is parametrized by multi�
variate vector x ∈ Rd. The components of vector x
include geometrical and physical characteristics,
parameters of the environment, and parameters of its
functioning. Some characteristic Y = F(x) of the object
is considered and the object is said to be optimal if its
characteristic Y(x) takes the maximum or the mini�
mum value among all other admissible objects x. In
other words, the problem of selection of the best tech�
nical solution can be formulated as the problem of
optimization of some function F(x) on set of object x.

To formulate the optimization problem, it is neces�
sary to specify constraints on vector x. It is evident that
not all d�tuples of real numbers correspond to a cor�
rect and physically sensible object. For values of some
parameters, engineers can indicate intervals of admissi�
ble values known from the object domain. Thus speci�
fied domain is the parallelepiped Π = {x ∈ Rd|li ≤ xi ≤ ui,
i = 1... d}, which may contain points far from the
known vectors x describing physically correct objects.
It is very likely that all these points will not correspond
to correct objects.

The situation when some coordinates of vector x do
not have independent meaning and sense is rather fre�
quent. Therefore, it is difficult to specify informative
constraints for them. Vector x can include detailed
description of the object surface, which consists of the
coordinates of the points on the grid imposed on the
object surface. These descriptions are widely used in
CAD systems, programs for calculation of aerodynamic
characteristics and visualization.

In the process of design, the engineers conducting
experiments collect data bases of digital descriptions
of objects and parameters of experiments X = {xi ∈ Rd,
i = 1...N}. Vectors from set X describe real objects. It is
desirable to construct description of the data domain
(design space) with correct vectors on the basis of
known vectors from set X. These domains should pos�
sess the following properties. First, they should con�
tain as many as possible vectors from X. Otherwise,
important information on a great number of correct
objects will be lost. Second, the design space should
have a small volume so as to exclude points that are
distant from the points from X and, with a high proba�
bility, do not correspond to a physically sensible
object.

The constructed domain can be used as constraints
on values of x in optimization problems. This causes
several additional requirements imposed on the
domain. Convex optimization is highly developed and
convex programming problems have important pro�
perties, such as existence and uniqueness of the global
minimum, and the local minimum is global [1]. Effi�
cient algorithms have been developed for solution of
convex problems and their high�quality implementa�
tions in many programming languages are available. In
order to make the problem convex, it is necessary to
ensure that the limitations determine a convex design
space. Therefore, in this study, a convex description of
data set X will be constructed. The simplicity of
description of the domain and easiness of generation
of random points in it are also important. In the paper,
we propose to look for the description of the design
space in the form of an ellipsoid [2, 3].

Another application of the description of the data
domain is the outlier detection problem. Outliers are
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the points that differ substantially from ordinary
points. The description of set X of ordinary, i.e., nor�
mal points is constructed using a small�volume ellip�
soid. If a new point belongs to it, it is classified as ordi�
nary. Otherwise, the conclusion is made that this is an
outlier.

Usually, anomalies are very rare and the learning
samples for outlier detection problems contain a small
number of negative examples. In a similar problem of
novelty detection, learning samples contain only ordi�
nary points [4]. Thus, it is necessary to construct a
geometrical body, containing a great number of points
from the learning sample in order to minimize the
probability of false alarm errors. However, this body
should have a small volume since, otherwise, the out�
liers will be often recognized as ordinary points. The
anomaly and novelty detection problems are widely
used in statistics, model�constructing problems for the
credit scoring, and computer�aided detection of
fraudulent activities [5, 6].

Study [7] presents one more application of mini�
mum�volume ellipsoids. It has been proved that the
center of the minimum�volume ellipsoid containing
more than a half of the points of set X is a stable affine�
invariant location estimation. Papers [8, 9] consider
other properties of this estimation, namely, rate of con�
vergence, consistency and continuity with respect to the
distribution used for generation of set X. The main
drawback of this estimation is a high computational
complexity of exact calculation. In [10], an approxi�
mate method for approximation of the location estima�
tion using the minimum ellipsoid is described. It is rea�
sonably complex in small�dimension spaces.

This paper is organized as follows. Section 2 con�
tains formal formulation of the problem and the proof
of existence of an exact solution with description of a
naive but resource�capacious algorithm. Section 3
presents a survey of two known methods for obtaining
an approximate solution to the problem. In Section 4,
we propose two generalizations of known methods. It
will be shown that some properties of the known
methods are preserved during the generalization. This
allows one to efficiently use new methods in practical
simulation. Section 5 contains the results of numerical
experiments on artificial data sets with different statis�
tical characteristics. The final Section 6 summarizes
the results of the study.

2. FORMULATION OF THE PROBLEM

Let us have sample X = {xi ∈ Rd, i = 1...N} of vectors
from a d�dimensional space. Let E be an ellipsoid that
we should construct for description of set X. The ellip�
soid can be specified using its center a ∈ Rd, a d × d
symmetrical positively defined matrix P = PT � 0, and
a squared effective radius R ≥ 0 in the form of the fol�
lowing inequality:

(1)E x Rd∈ x a–( )TP 1– x a–( ) R≤{ }.=

Let us denote the volume of ellipsoid E by Vol(E).
Its value is calculated by the formula

(2)

where wd = πd/2/Γ(d/2 + 1) is the volume of the a unit
ball in space Rd.

Let us introduce a discrete function of the number
of points from set X that do not belong to ellipsoid E:

(3)

Let us pose the following bi�objective optimization
problem of the search for a small�volume ellipsoid
containing many points from the specified set X:

(4)

It is impossible to decrease to zero the ellipsoid vol�
ume, without leaving beyond its bounds virtually all
points from learning set X. Therefore, a solution to the
problem will be a set of Pareto optimal ellipsoids. This
is the set of ellipsoids that are not dominated by any
admissble and not Pareto optimal ellipsoid. It is said
that ellipsoid E1 dominates ellipsoid E2 if and only if
K(E1) ≤ K(E2) and Vol(E1) ≤ Vol(E2) and if at least one
of these inequalities is strictly met. The Pareto frontier
of the problem is formed by pairs of volume (2) and
number (3) of outliers among points of the learning
data set calculated for Pareto optimal ellipsoids. A par�
ticular ellipsoid is selected by the expert from the
Pareto optimal set, depending on the demands of a
particular data analysis problem.

The following theorem establishes the fundamental
solvability of problem (4).

Theorem 1. The Pareto frontier and the set of Pareto
optimal ellipsoids for problem (4) exist and can be deter�
mined.

Proof. Looking through all subsets G ⊆ X, solving
problems

(5)

and selecting a set of nondominated ellipsoids among
solutions of (5), it is possible, evidently, to solve
problem (4). Note that the constraint G ⊂ E and
objective function Vol(E) can be expressed in the con�
vex form [1]. Hence, each problem (5) has a unique
solution if the convex hull of set G has positive volume.
To find the Pareto frontier, it is necessary to select a
minimum�volume ellipsoid containing exactly j points
from X for each value j = 1...N, i.e., the minimum of
the bounded from below set (since the volume is not
negative).

It is possible that, for some point (V, K) on the
Pareto frontier, there are two (or more) different opti�
mal ellipsoids E1 ≠ E2 for which Vol(E1) = Vol(E2) and
K(E1) = K(E2). Since they do not dominate each other
they both are included into the set of Pareto optimal
ellipsoids of problem (4).

Vol E( ) wd detPRd/2
,=

K E( ) # x X∈ x E∉{ }.=

Vol E( ) K E( ),( ).
E

min

Vol E( )( )
E

min

s.t. G E⊂
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3. KNOWN APPROXIMATE METHODS

The method used in the proof of Theorem 1 is
unrealizable in practice. It requires solution of about
2N (number of subsets G ⊆ X) problems (5). In this
paper, methods for approximate solution of problem
(4) are described.

We can replace the ellipsoid volume by any mono�
tonically increasing function φ(Vol(E)). The following
optimization problem is equivalent to problem (4):

The authors of the papers that will be mentioned
below in this section do not solve problem (4). They
replace discrete objective function K(E) by other con�
tinuous convex function, e.g., by a sum of quantities
ξi, where nonnegative quantity ξi ≥ 0 is the measure of
remoteness of point xi from the ellipsoid. This measure
of remoteness can be selected by different methods,
depending on the problem conditions. If xi ∈ E, then

ξi = 0. By denoting the vector of all ξi by ξ = ,
we obtain the following formulation instead of prob�
lem (4):

(6)

The scalarization method is a generally accepted
method for solving multicriterion optimization problems
[1]. For any nonnegative constant C ≥ 0, we consider the
following problem with one objective function:

For convex problems (if all objective functions are
convex and the constraints specify a convex set in
space ξ and ellipsoid parameters P, a, R), by changing
the scalarization parameter C in the range [0; ∞], it is
possible to obtain all Pareto optimal ellipsoids [1]. For
nonconvex problems, scalarization gives a subset of
the Pareto frontier of problem (6).

For a fixed matrix P of the ellipsoid or a fixed value
of determinant detP, the volume is a function of the
effective radius of the ellipsoid. Therefore, we take
φ(Vol(E)) = R.

In [11], the description of the domain is con�

structed as a sphere with radius  The points xi from

the learning set X lie in a sphere with radius 
for some ξi ≥ 0. Thus, the matrix of ellipsoid P is the

φ Vol E( )( ) K E( ),( )
E

min .

ξi{ }i 1=
N

φ Vol E( )( ) ξi

i 1=

N

∑,⎝ ⎠
⎜ ⎟
⎛ ⎞

E ξ,
min .

φVol E( ) ξi

i 1=

N

∑+
E ξ,
min .

R.

R ξi+

identity matrix and the scalarized form of the problem
of description of the data set has the following form:

(7)

The authors of paper [12] propose a method for
description of set X in which the data set is described
by an ellipsoid whose matrix is equal to the covariance
matrix of sample X. Such a selection of this matrix is
related to the aim of taking into account correlation
between different characteristics of simulated objects.
In [12], the center of the ellipsoid is fixed at the arith�
metic mean of points X: 

 

Matrix P is calculated by the formula

As a result, paper [12] proposes to solve the follow�
ing optimization problem:

(8)

Both problems (7) and (8) can be written in the
convex form (see Section 4.2) and, hence, using the
scalarization method, it is possible to find their Pareto
frontier.

4. THE PROPOSED NEW APPROACH

The ellipsoid constructed by means of problem (8),
has a fixed center. If it is allowed to vary, as in problem (7),
we evidently obtain ellipsoids that are not worse after
solution of the following problem:

(9)

Problems (7), (8), and (9) described above have a
common drawback: the matrix of the ellipsoid is fixed.
We propose to include the matrix of the ellipsoid into
a list of optimization variables. Then, we obtain the
following optimization problem:

R C ξi

i 1=

N

∑+
R a ξ, ,
min

s.t. xi a–( )T xi a–( ) R ξi, i+≤ 1…N,=

R 0, ξi 0, i≥≥ 1…N.=

μ 1
N
��� xi.

i 1=

N

∑=

P Cov X X,( ) 1
N
��� xi μ–( ) xi μ–( )T

.

i 1=

N

∑= =

R C ξi

i 1=

N

∑+
R ξ,
min

s.t. xi μ–( )T
Cov

1– X X,( ) xi μ–( ) R ξi, i+≤ 1…N,=

R 0, ξi 0, i≥≥ 1…N.=

R C ξi

i 1=

N

∑+
R a ξ, ,
min

s.t. xi a–( )T
Cov

1– X X,( ) xi a–( ) R ξi, i+≤ 1…N,=

R 0, ξi 0, i≥≥ 1…N.=
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The parameters of ellipsoid (1) include both matrix P
and the squared effective radius R. By multiplying ele�
ments of P by some number z > 1, it is possible to decrease
R and ξi without violating the constraint by dividing them

by z and to decrease the (R + ) to a value arbi�

trarily close to zero. To avoid this, let us require that an

ellipsoid with the unit effective radius would be not too
large. Let us add one inequality for the ellipsoid matrix
determinant into the list of constraints of the problem. In
addition, let us replace C by other dimensionless param�
eter C = 1/Nν, the meaning of which will be explained
later. Thus, we obtain the following problem:

(10)

4.1. Interpretation of the Scalarization Parameter

The following theorem explains the meaning of the
replacement C = 1/Nν.

Theorem 2. The fraction of points of set X that do not
belong to ellipsoid (1) constructed by solving problem (10)
does not exceed ν.

Proof. The Lagrangian for problem (10) can be
written as

where α =  β =  and γ ≥ 0 are
the Lagrange multipliers, q(P, δ) is the function of the
ellipsoid matrix and the Lagrange multipliers corre�
sponding to the remaining constraints. At the opti�
mal point, ∇L = 0. We obtain the following system of
equations:

(11)

(12)

From the Karush–Kuhn–Tucker (KKT) condi�
tions, we also have equations of complementary
slackness:

(13)

Point xi ∉ E if and only if when ξi > 0, which,
together with (13), means that βi = 0. From (12), we
obtain αi = 1/Nν for outliers (points out of the ellip�
soid). Since γ ≥ 0, then, taking into account Eq. (11),
we conclude that  Using nonnegativeness

of all αi, we state that the number of αi that are equal
to 1/Nν does not exceed Nν. Theorem is proved.

It is possible to prove similar statements for prob�
lems (7), (8), and (9).

Three following notes show how Theorem 2 can be
applied in practice.

Note 1. It follows from Theorem 2 that the number
of points of set X that lie out of the ellipsoid does not
exceed Nν, which allows one to set the range of possi�
ble values of parameter ν. In practice, too small or too
large values of ν out of the range [1/N, 1] are not used.
For small values of ν, all points belong to the ellipsoid
and the change of the scalarization parameter below
1/N does not change number (3) of outliers among the
learning set; it remains K = 0.

For ν > 1, all points may lie out of the ellipsoid. For
large ν, the coefficient C = 1/Nν for the measure of

R C ξi

i 1=

N

∑+
P a R ξ, , ,

min

s.t. xi a–( )TP 1– xi a–( ) R ξi, i+≤ 1…N,=

P PT
 � 0, R 0, ξ≥ i 0, i≥ 1…N.= =

C ξii 1=
N

∑

R 1
Nν
������ ξi

i 1=

N

∑+
P a R ξ, , ,

min

s.t. xi a–( )TP 1– xi a–( ) R ξi, i+≤ 1…N,=

P PT
 � 0, detP 1, R 0, ξ≥≤ i 0, i≥ 1…N.= =

L P a R ξ α β γ δ, , , , , , ,( ) R 1
Nν
������ ξi

i 1=

N

∑+=

+ αi xi a–( )TP 1– xi a–( ) Rξi–( )
i 1=

N

∑

– βiξi γR– q P δ,( ),+
i 1=

N

∑

αi 0≥{ }i 1=
N

, βi 0≥{ }i 1=
N

,

∂L
∂R
����� 1 αi γ–

i 1=

N

∑– 0,= =

∂L
∂ξi

������ 1
Nν
������ αi βi–– 0.= =

βiξi 0.=

αi 1.≤
i 1=
N

∑
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remoteness of the point from the ellipsoid becomes
small and the optimal ellipsoid is degenerated into the
point with R = 0. In fact, Eq. (12) proves that 0 ≤ αi ≤
1/Nν. If ν > 1, then  and, hence (see

(11)), γ > 0. The KKT condition γR = 0 proves that
R = 0, i.e., the ellipsoid is actually degenerated into
the point.

Note 2. By solving problem (10), it is possible to
approximate part of the Pareto frontier of problem (4).
Theorem 2 allows one to select the value of the scalar�
ization parameter if the engineer wants to obtain an
ellipsoid with a specified number of outliers (3).

Note 3. It is possible to diagnose changes in the typical
behavior of the simulated system. In the novelty detec�
tion problem, the analysts operate with an available
data sample and train the classifier. When the system is
deployed, normal behavior of the system may change

and the parameters that were earlier anomalous may
become normal in future and vice versa. This can
mean that the resource of the mechanism is exhausted,
or, alternatively, the evolution of the system may be
typical (e.g., the climate change) and it is necessary to
construct the ellipsoid again on the basis of new data.
Theorem 2 allows one to automatically detect the need
in retraining of the model. The system can track the
intensity of detection of outliers. The ellipsoid should
be considered out�of�date if the fraction of outliers
exceeds the value of ν used during construction of the
ellipsoid.

4.2. Convex Formulation of the Optimization Problem

Problem (10) can be reformulated in the convex
form. Let Q = P–1/2 and b = Qa. Then problem (10) is
equivalent to the following problem:

It is known that the function f(Q) = –lndetQ is
convex on a set of positively detfined symmetric matri�
ces [1]. Using the Schur’s lemma, the quadratic con�
straint can be rewritten in the form of a linear matrix

inequality (LMI). The set of solutions of the LMI is
convex [13]. Hence, problem (10) can be reduced to
the convex programming problem

(14)

Similarly, problems (7), (8), and (9) can be formu�
lated in the convex form.

4.3. Refinement of the Solution

Problems (9) and (14) are the approximations of
problem (4). Ellipsoid E on which the corresponding
minimum value is attained contains some subset
U(E) ⊆ X of vectors from the learning sample. Points
from U(E) form a set of points at which ellipsoid E is
Pareto optimal for problem (6).

A classical problem of construction of the mini�
mum�volume ellipsoid containing specified points

(Lowner ellipsoid) is known. Let us fix in the equation
of ellipsoid (1) the squared effective radius R = 1 and
replace variables: Q = P–1/2 and b = P–1/2a. Then the
parameters of the minimum�volume ellipsoid con�
taining points from U(E) can be determined by solving
the following problem [13]:

(15)

αi 1,<
i 1=
N

∑

R 1
Nν
������ ξi

i 1=

N

∑+
Q b R ξ, , ,

min

s.t. Qxi b–( )TI Qxi b–( ) R ξi, i+≤ 1…N,=

Q QT
 � 0, detQ 1, R 0, ξ≥≥ i 0, i≥ 1…N.= =

R 1
Nν
������ ξi

i 1=

N

∑+
Q b R ξ, , ,

min

s.t. R ξi+ Qxi b–( )T

Qxi b–( ) I⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

T

 � 0, i 1…N,=

Q QT
 � 0, detln– Q 0, R 0, ξ≥≤ i 0, i≥ 1…N.= =

detQln–
Q b,
min

s.t. 1 Qxi b–( )T

Qxi b–( ) I⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

T

 � 0, xi U E( ).∈
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Let us have ellipsoid E that is optimal for problem (6).
Let us find points from X, that belong to ellipsoid E:
U(E) = {x ∈ X|x ∈ E}. Using procedure (15), we construct
minimum�volume ellipsoid E ' containing points from
U(E). Then Vol(E ') ≤ Vol(E) and K(E ') ≤ K(E). In prac�
tice, the first inequality usually strictly holds. In the gen�
eral case, ellipsoid E ' does not belong to ellipsoid E and,
in addition to points from U(E), may contain additional
points from X. Thus, application of procedure (15) allows
one to obtain ellipsoid E ' dominating ellipsoid E in the
sense of the main problem (4).

5. RESULTS OF THE EXPERIMENTS

The methods based on solution of optimization
problems (9) and (14), after the use of procedure (15)
are compared with the known methods (7) and (8).
Below, we will refer to method (7) as the Ball; method (8)
as the Principal Component Ellipsoid or, in abbreviated
form, PCE; our method (9) together with subsequent
application of procedure (15) as the PCE with optimal
center; and method (14) and (15) as the Optimal ellipsoid.

The convex programming problems were solved
using the CVX package for MATLAB [14].

The methods were compared using the following
artificial data sets:

1. Set box_10_100 consists of 100 points uniformly
distributed in cube [0, 1]10.

2. In order to generate set normal_COV_6_100
containing 100 points, a multivariate normal distribu�
tion in space R6 with fixed non�unitary covariance
matrix Σ ≠ I was used.

3. Two�dimensional data set banana consists of
100 points taken from a nonconvex domain. It is
shown in Fig. 1.

Plots 2, 3, and 4 show approximations of the Pareto
frontier for problem (4) obtained by the considered meth�

ods for data sets box_10_100, normal_COV_6_100,
and banana, respectively. The fraction of K(E)/N
points that do not belong to the ellipsoid is placed
along the ordinate axis. The d�dimension volume
Vol(E) of the ellipsoid is placed along the abscissa axis.
For each method and data set, 40 different values of ν
in the range (0, 0.5] were used.

By analyzing the experimental results, we come to
the following conclusions:

1. In spaces with low dimensions d, when the size
of the sample N is sufficiently large, all methods give
close approximations of the Pareto frontier.

2. The Ball method gives points that are much more
distant from the Pareto frontier than other methods if
the variance of the data along one direction substan�
tially differs from the variance along other directions.

1.0
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–0.5

–1.0
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Fig. 1. Set of 100 points banana in R2, which form a non�
convex domain.
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normal_COV_6_100 data set.
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3. Sometimes our method Optimal ellipsoid gives
points that are dominated by ellipsoids constructed by
other methods. This is possible, since formulation (6)
is an approximation of problem (4) and gives an
approximate solution. The ellipsoids constructed
using one approximation can dominate other approx�
imate solutions.

4. If ν increases, i.e., the number of outliers in the
learning set is large, all methods (except for Ball) give
close Pareto frontiers in most experiments.

5. As compared to other methods, the Optimal
ellipsoid method gives substantially better results in
high�dimension spaces and when set X consists of a
not very large number of points. These situations arise
in practice. The computer experiment can be very
long�term and, at the beginning of the study, the data
base of the experiments contains a small number of
multidimensional vectors.

6. Our approach Optimal ellipsoid also substantially
surpasses the known methods when the fraction of points
lying out of the ellipsoid (ν) is sufficiently small. This part
of the Pareto frontier is most interesting in practice.

6. CONCLUSIONS

We have considered the data representation with
the use of extremal ellipsoids. Main problem (4) with
continuous and discrete objective functions has been
solved approximately by replacing initial criteria with
other convex functions. The scalarization method has
been used to solve the multicriterion problem.

In future, alternative approximations of problem
(4) should be studied. Minimization of the sums of
distances in the Mahalanobis metric from the bound�
ary of the ellipsoid to the point instead of minimiza�
tion of their squares may increase stability of location
estimation and give more exact results for the number

of outliers K(E), since large distances from the point to
the ellipsoid are penalized weaker. More exact but
nonconvex approximations of this problem are also
possible. However, there are no universal fast solution
methods for them.
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Fig. 4. Approximate Pareto frontier for the banana data set.
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