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1. FORMULATION OF THE PROBLEM

There are no analytical (closed) solutions to
boundary value electrodynamic problems excluding a
very bounded number of cases. As a rule, these solu�
tions can be represented by infinite sums as decompo�
sitions in the functional space that is determined by a
functional space determined by the operator equation,
which specifies the zero element of the functional

space. Let ϕ and  be the scalar and vector potentials
of the electromagnetic field and ε and μ be the
medium permittivity and permeability. Then, when
the Lorentz calibration

(1)

is used, the boundary value problems give rise to oper�
ator equations like the Helmholtz equation.

Actually, a corollary to relationship (1) consists of
the waveguide equations

(2)

where ρ and  are the densities of volume free charges
and currents.

The harmonic time dependence of Eq. (2) yields
the Helmholtz equations. Expressing the scalar and

vector potentials in terms of Hertz vectors 
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we obtain the wave equations

(3)

where  and  are the polarization and magnetiza�
tion vectors that determine the functions of the elec�
tromagnetic field sources.

The expressions

form the coupling between the components of the
electric and magnetic fields

(4)

Thus, Lorentz calibration (1) forms the coupling
between the components of the electromagnetic field
in form (4).

As a rule, the Helmholtz operator equation is the
zero element of a functional space in direct variation
method [1], in particular, in the Galerkin method.
When condition (1) is not imposed on electromag�
netic fields, there is no operator coupling (3) and (4)
between the fields. As a result, the system of the Max�
well equations can directly be present as the zero ele�
ment of the functional space. In this case, the compo�
nents of the electric and magnetic fields, which are not
analytically coupled in form (4), can autonomously be
decomposed in arbitrary orthogonal bases. The cou�
pling between the field components will later on be
established with the help of the Galerkin procedure
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applied to the Maxwell equations. This approach
expands the possibilities of direct variation methods.
Let us formulate the spectral method for the calcula�
tion of guiding electrodynamic structures where
Lorentz calibration condition (1) is not imposed on
the fields.

As an example of realization of the proposed
method, we consider a rectangular waveguide with a
dielectric filling that is regular in longitudinal coordi�
nate z and arbitrary in the transverse section (Fig. 1).
The values of the filling permittivies can be complex as
well.

Let us represent the dielectric filling in a rectangu�
lar waveguide in the form of a piecewise continuous
function

and write the Maxwell equations for the whole region
inside the considered waveguide

(5)

where ε0 and μ0 are the permittivity and permeability
constants.

We obtain from Eqs. (5) that
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where  = 

Assuming that the field depends on longitudinal
coordinate z and the time as  +  (i.e.,

 = ), we obtain from (6)
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three equations for the x, y, and z components of the
electric field

(7)

where β is the longitudinal wave number.

We represent components of the electric field 
 and , which are functions of transverse coordi�

nates, in the form of autonomous decompositions
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(8b)

(8c)

Here,          and  are

the decomposition coefficients;  =   = 
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It is principal that the decomposition coefficients
in (8a) and (8b) are independent when calibration
condition (1) is abandoned.
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boundary conditions
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Fig. 1. General structure of the waveguide transverse section.
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and replacing the infinite limit of summation by finite
number M, we bring expressions (8a) and (8b) to the
form

(10)

In this case, expressions (10) are the decomposi�
tions in the orthogonal bases corresponding to bound�
ary conditions (9), because there is no operator cou�
pling of the field components in form (3).

Let us represent expressions (10) in the following
form:

(11)

where N =  When ordinary summation is
performed in (11), the whole spectrum of functions is
taken into account in (10). Transverse coefficients

 and  are written as follows:  = 
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  =  Here,   and 

 For example, when M = 2, quantities  and

 are written as  = (     )T

and  = (     )T. Here,
sign Т means the conjugation operation.

Thus, the solution of the problem of calculation of
arbitrarily filled waveguides is reduced to the represen�
tation of the electric field in form (11). The coupling
between the x, y, and z field components in (11) is
determined by coefficients   and  which are
found from the Maxwell equations with substituted
expressions (11) upon the Galerkin procedure is car�
ried out. This process of determination of the decom�
position coefficients and couplings of the field compo�
nents is called the spectral method.

( ) ( )

( ) ( )

( ) ( )

,

0 0

,

0 0

,

0 0

cos sin ,

sin cos ,

sin sin .

M M

x p r p r

p r

M M

y p r p r

p r

M M

z p r p r

p r

E A x y

E B x y

E C x y

= =

= =

= =

= η ϑ

= δ χ

= κ σ

∑∑

∑∑

∑∑

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

( ) ( )

0

( ) ( )

0

cos sin ,

sin cos ,

sin sin ,

N
x x

x n n n

n

N
y y

y m m m

m

N
z z

z t t t

t

E a x y

E b x y

E c x y

=

=

=

= α γ

= α γ

= α γ

∑

∑

∑

2( 1) 1.M + −

( ), ,x y z
nα

( ), ,x y z
nγ ( )

( )
1

x
p M r+ +

α ,pη

( )
( )

1
x

p M r+ +
γ ;rϑ ( )

( )
1

y
p M r+ +

α ,pδ ( )
( )

1
y

p M r+ +
γ ;rχ ( )

( )
1

z
p M r+ +

α

,pκ ( )
( )

1
z
p M r+ +

γ σ .r 0,p = 1,..., M 0,r =

1,..., .M
( )x

α

( )x
γ

( )x
α 0 1, ,η η 2 0, ,η η 1 2, ,η η 0 1, ,η η 2η

( )x
γ 0 0, ,ϑ ϑ 0 1, ,ϑ ϑ 1 1, ,ϑ ϑ 2 2, ,ϑ ϑ 2ϑ

,na ,mb ,tc

The substitution of expressions (11) into (7) yields
the system of functional equations
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(13b)

(13c)

where  is the Kronecker symbol.

With allowance for (13a)–(13c), we obtain from
(12a)–(12c) the system of matrix equations

(14)
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System (18) can be represented in the form of the single matrix equation

where

(19)

Equating the determinant of matrix Δ to zero, we
obtain the dispersion equation of the waves of a rect�
angle waveguide with an arbitrary dielectric filling.

We note the particular properties of the proposed
method. It is seen from formulas (15a)–(15c),
(16a)–(16c), and (17a)–(17c) that dielectric filling

function  affect only matrices  , and

 which depend on neither frequency nor the value
of longitudinal wave number β. Thus, for an arbitrarily
complex structure, all matrices entering (19) are cal�
culated only once, after which they are simply multi�

plied by  and  as it is seen from (19). This circum�
stance makes it possible to reduce substantially the
time necessary for the solution of the dispersion equa�
tion in the plane (ω, β).
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with an Angular Coordinate Dielectric Filling

To demonstrate the efficiency of the proposed
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sible to compare it with the partial domain method
(PDM). Let us apply the proposed method to the cal�
culation of the guiding structure shown in Fig. 2 and
compare the results with those shown in [2].

The parameters of the structure are as follows: W =
8 mm, w = 5 mm, H = 10 mm, h = 6 mm, and ε = 6.
The calculation is performed by two methods: the pro�
posed spectral method and PDM. In the case of the
PDM, the analyzed structure is split in regions 1 and 2
(see Fig. 2), where the LM� and LE�wave apparatus is
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The solutions to the dispersion equation that are
obtained by the two methods in various approxima�
tions are presented in the table and in Fig. 3.

In the table, we show the results of the solution of
the dispersion problem obtained by the PDM and
spectral method. In the first column, approximation
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solved. The data of the table is graphically shown in
Fig. 3.

It is seen from the table and Fig. 3 that the results
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normalized propagation constants obtained by the two
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The PDM and spectral method are applied to cal�
culate the dispersion characteristics of the considered
waveguide in the frequency range from 2 GHz to
16 GHz (Fig. 4). Curves 1, 2, 3, and 4 correspond to
Re(НЕ1), Re(НЕ2), Re(НЕ3), and Re(НЕk), and
curves 1', 2', 3', 4', and 5' correspond to Im(НЕ1),
Im(НЕ2), Im(НЕ3), Im(НЕk), and Im(НЕ4). The cal�
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Fig. 2. Rectangular waveguide with the angular coordinate
dielectric filling.
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Fig. 3. Convergence of the (curve 1) spectral method and
(curve 2) PDM at the frequency f = 14.0 GHz.
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culation results obtained by the two methods practi�
cally coincide (the dispersion curves are graphically
indistinguishable).

It is seen from the figure that the spectrum of the
waveguide eigenwaves contain the complex waves
(CWs) [3–5] whose dispersion characteristics start in
the Jordan multiplicity points of wave numbers [5].

Thus, the effectiveness of the proposed method is
demonstrated for the example of a rectangular
waveguide partly filled with a dielectric.

2.2. Calculation of a Rectangular Waveguide 
with a Diagonal Filling

The proposed method is applied to calculate a rect�
angular waveguide diagonally filled by a dielectric. The
parameters and dispersion characteristics of the calcu�
lated waveguide are given in Fig. 5. The notations of
the curves in Fig. 5 correspond to those in Fig. 4. Note
that it is rather problematic to calculate this guiding
structure by any other method (in particular, the
PDM).

As it is seen from Fig. 5, there are CWs in the spec�
trum of the eigenwaves of the considered waveguide.

It is known [5, 6] that CWs do not carry energy : in
the transverse section, the positive power flux com�
pensates the negative one. To check the compensation
of the direct and reverse CW power fluxes, we numer�
ically integrate the Umov–Poynting vector over two
inner regions of the waveguide: over region S1 filled by
dielectric and region S2 free from dielectric (Fig. 6). As
a result, we obtain

where  =  is the formula describing the

interface between the dielectrics and the sign * denotes
the complex conjugation operation.

( ) ( )Π = × = ×

= −

∫ ∫ ∫
�� � � ��

�
* *

 
1

( )

1

0 0

6.27215453 947621 1.52814418520953 ,

W y x

S

E H dS E H dydx

  i

( ) ( )
( )

Π = × = ×

= − +

∫ ∫ ∫
�� � � ��

�
**

2

2

0

6 27215453947629 1 52814418520947 ,

W H

S y x

E H dS E H dydx

. . i

( )y x HH x
W

−

Results of calculation of the structure by the PDM and
spectral method

M
Partial domain

method
β/k0

Spectral
method 
β/k0

2 1.755013 1.753340

3 1.754223 1.757953

4 1.754177 1.758168

5 1.754127 1.757674

6 1.754045 1.757714

7 1.754059 1.757299

8 1.754024 1.756771

9 1.754026 1.756791

10 1.754022 1.756399

11 1.754013 1.756185

12 1.754017 1.756157

13 1.754009 1.755862

14 1.754010 1.755804

15 1.754009 1.755589
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Fig. 4. Dispersion characteristics of the rectangular
waveguide with the angular coordinate dielectric filling.
The waveguide is shown in Fig. 2; W = 8 mm, w = 5 mm,
H = 10 mm, h = 6 mm, and ε = 6.
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nally filled with a dielectric; W = 8 mm, H = 10 mm, and
ε = 6.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 61  No. 4  2016

ON THE SOLUTION OF WAVEGUIDE BOUNDARY VALUE PROBLEMS 369

It is seen from the obtained results that the power
fluxes in the two partial regions have opposite signs
and modules equal to the 12th sign after the comma.
The imperfection of the equality is due to the finite
approximation applied to the solution of the disper�
sion problem and to the error of the numerical calcu�
lation of integrals. It is shown in [7] that the correct�
ness of formulation and solution of problems in a non�
closed form can be checked by the convergence of the
CW power flux to zero that is observed as the approxi�

mation number grows. In addition, the orthogonality
of the waveguide eigenwaves is checked to confirm the
correctness of the obtained results.

The proposed method is applied to calculate the
longitudinal wave numbers of the five eigenwaves of
the waveguide (in the sequence order of critical fre�
quencies) at the frequency of 12.6 GHz:

The orthogonality of the waveguide eigenwaves is
checked using the calculation of the determinant of
the Ort matrix whose elements are determined as fol�
lows:

 

−

⎛ ⎞
⎜ ⎟
⎜ ⎟

β = ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠
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357.384066437223

113.826952982819 m

299.601303189174

� 426.274899445668
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i

i

( )
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∫
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0 0

,

0,...,4 0,...,4.

k j k j

S

H W

x y y x
k j k j

E H dS

E H E H dxdy

k j

As a result, we obtain

Ort

=

1.00 1.34 10
4–

× 7.41– 10
5–

× 9.46– 10
5–
–9.46i 10

5–
×× 5.13– 10

5–
× –5.13i 10

5–
×

7.52 10
5–

× 1.00 6.06 10
5–

× 7.74 10
5–
+7.74i 10

5–
×× 7.13– 10

5–
× –7.13i 10

5–
×

4.03 10
5–

× 4.22 10
6–

× 1.00 2.52 10
5–
+2.52i 10

5–
×× 1.28– 10

4–
× –1.28i 10

4–
×

6.48– 10
5–
+6.48i 10

5–
×× 3.64 10

5–
–3.64i 10

5–
×× 2.64 10

5–
–2.64i 10

5–
×× 1.00 8.64 10

6–
×

5.01– 10
5–
+5.01i 10

5–
×× 2.85– 10

5–
+2.85i 10

5–
×× 2.73 10

5–
–2.73i 10

5–
×× 1.89– 10

6–
× 1.00⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

It is seen that the matrix approaches the unit one
and the maximum relative error does not exceed 10–4

(i.e., 0.01%).

CONCLUSIONS

The proposed method for calculation of
waveguides inhomogeneously filled by a dielectric is
universal and has the only limitation, which is in the
fact that the outer metallized boundary must be a
coordinate one. Since the Lorentz calibration is aban�
doned, the orthogonal basis of field representation is
easily formed.

The method is preferred over the PDM in the solu�
tion of similar problems, because it does not need the
continuous spectrum of eigenfunctions to be intro�
duced in partial domains where the Sturm–Liouville
boundary problem cannot be formulated [8].

The method is simple to algebraize dispersion
problems. It is mathematically substantiated among a
lot of computer methods and does not depend on the
noncoordinate character of boundaries between the
regions of the transverse section.

In the presented method, the number of functions
of the electromagnetic field decomposition is limited
instead of reducing the matrix equations.

The results of investigations of guiding structures
that are based on the ideology described in this paper
are published in [9–14].
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