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1 INTRODUCTION

Recently, the method of precise point positioning
(PPP) has been actively developed in global navigation
satellite systems (GNSSs) [1]. The PPP means esti�
mation of precise user coordinates in the Earth�cen�
tered�Earth�fixed coordinate system with processing
of only pseudorange (code) and phase measurements
(observations) from user’s navigation receiver. Cur�
rently, one can speak of the so�called global differen�
tial navigation satellite systems in which it is possible
to distinguish the network solution (processing of
measurements from the network of ground stations)
and the user solution, i.e., the PPP.

The PPP is not an autonomous method; it requires
precise ephemerides (satellite orbits and clocks) cal�
culated in the network solution. The PPP method in
GNSS is based on the use of precise ephemerides,
compensation of a number of systematic biases in
measurements and use of precise but ambiguous phase
measurements. Today, the PPP errors in the postpro�
cessing mode reach 1 cm or less for a static receiver
and a few dm for a kinematic receiver [1].

The PPP method without taking into account the
integer nature of ambiguities of phase measurements
has become standard in GNSS, it is called the Float
PPP method. In this method, integer ambiguities of
phase measurements are estimated as float values,

1 The article was translated by the authors.

because they absorb unmodeled equipment biases [1].
The convergence period of the float PPP method to
the 1�cm accuracy level is too long (several hours) for
many applications. It is necessary to use ambiguity
resolution of phase measurements during processing
(Integer PPP method) to reduce it [2]. Implementa�
tion of the Integer PPP method requires separation of
unmodeled equipment biases and integer ambiguities
in the observation model. This procedure leads to sin�
gularity of the design matrix of the system of linearized
GNSS equations, i.e., to rank deficiency. 

Today, several approaches to implementation of the
Integer PPP method are known [2–6]. We have cho�
sen the method most theoretically substantiated,
which is based on the decoupled clock model devel�
oped in Natural Resources Canada (NRCan) [2]. The
approach assumes that the clocks for receiver and sat�
ellites in observation model are separated according to
the measurement type and frequency. To remove the
rank deficiency in the original systems of equations,
the theory of S�transformations, which has been
described in detail in the literature with application to
geodetic networks but without focusing on specific
GNSS features [7] is used. In this theory, all initial
parameters to be estimated are grouped into linear
combinations. The number of these combinations is
less than the number of initial parameters; as a result,
the singularity is removed. When this theory is used in
the Integer PPP method, the number of estimated
parameters is also reduced, but linear combinations
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are created not for all initial parameters. Some param�
eters, including corrections to coarse user coordi�
nates, are still estimated in their original form and lin�
ear combinations of phase ambiguities preserve their
integer nature. Theoretic explanation of this feature
and algebraic details of resolving the rank deficiency in
the Integer PPP method are absent in the literature.
The underlying feature of singular systems of equa�
tions in GNSS that allows implementation of the Inte�
ger PPP method will be formulated in this paper and
specific details of implementation of the Integer PPP
method for GPS and GLONASS will be investigated.

1. OBSERVATION MODELS
WITH DECOUPLED CLOCKS FOR GPS 

AND GLONASS

Mathematic models of pseudorange and phase
measurements of a navigation receiver with common
(not decoupled) clocks are detailed in [8, 9]. Below,
the observation model is meant as a set of receiver’s
measurements (combinations of measurements) that
is used to solve some problem by means of measure�
ment processing in GNSS. The linearized observation
model with decoupled clocks at initial GPS frequen�
cies described in [9, 10] can be written as follows:

(1)

where   are the pseudorange and phase mea�

surements for GPS satellite j at frequency  (i = 1, 2)

(m);  is the geometric distance from the jth satel�

lite to the point with coarse user coordinates (m); 

 and  are the directions cosines; Δx, Δy, and Δz
are the corrections to the coarse user coordinates (m);

 is the uncompensated wet component of vertical
tropospheric delay (m); mj is the mapping function for

the jth satellite;   and  and  are the
pseudorange (code) and phase receiver clock errors
relative to the GPS time scale, including receiver

equipment biases in measurements  ,  and

 (m);  ,  and  are the known from
the network solution code and phase clock errors of
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,  and  (m);  is the slant ionospheric

delay for the GPS satellite j at frequency  (m); kG =

  ≈ 0.19 (m) and  ≈
0.24 (m) are the wavelengths of satellite carrier signals

at frequency   and  are the integer ambi�
guities of phase measurements for the jth satellite at

frequency  (cycles); and  and  are the noise
errors for corresponding measurements (m). 

In (1) and further, it is supposed that measure�

ments   are corrected for systematic biases
associated with relativistic and gravitational effects,
phase center offsets, tidal effects, wind�up effect [1],
and tropospheric signal delay. Multipath errors are
considered to be insignificant and included in noise
errors. Model (1) has 8 + 3Msat (Msat is the the num�
ber of processed satellites) estimated parameters: Δx,

Δy, Δz,      …

 …  and  Due
to the presence of decoupled clocks and ionospheric
delays in (1), the corresponding system of equations
is singular and, for Msat > 4, the rank deficiency is
three. For brevity, observation model (1) is further
designated as the P1P2L1L2 model.

The linearized observation model with decoupled
clocks at initial GLONASS frequencies can be written as
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measurements    and  correspond to
the number of the GLONASS frequency band
(L1: 1598.0625–1605.375 MHz, L2: 1242.9375–
1248.625 MHz); j is the number of the satellite fre�

quency channel;  and  are the wavelengths of

satellite carrier signals at frequencies  =  +

 and  =  +  j = –7,…, 6 is the number

of the satellite frequency channel,  MHz,

 MHz, Δf1 = 0.5625 MHz, and Δf2 =

0.4375 MHz;  is the ionospheric delay of the signal

at frequency  (m);  and  are the receiver
code clock errors relative to the GLONASS time scale,
including receiver equipment biases in measurements

 and  (m);  and  are the receiver phase
clock errors relative to GLONASS time scale, includ�
ing receiver equipment biases in measurements

 and  (cycles);   (m) and

 =  –   =  – 
(cycles) are the known from network solution code
and phase clock errors of satellite j relative to the
GLONASS time scale, including initial phases of sat�

ellite oscillators   in measurements 

and  kR =   and  are the

integer ambiguities of phase measurements 

and  (cycles). Model (2) has 8 + 3Msat esti�
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 …  …  and …

Due to the presence of decoupled clocks and iono�
spheric delays in (2), the corresponding system of
equations is singular; for Msat > 4, the rank deficiency
is three. Model (2) is based on the hypothesis of linear�
ity of the phase response of navigation receiver

 –  where  is the phase bias for

frequency   According to the general circuit
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nal delays in navigation receiver equipment are con�
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clock errors  are  are present in not only code

measurements but also phase measurements 

. For brevity, observation model (2) is further
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To exclude the influence of ionospheric delays, a
GPS ionosphere�free observation model with decou�
pled clocks was developed at NRCan [2]:

(3)

where  is the Melbourne�Wubbena measurements

combination [2],  =  –  is the
integer widelane phase ambiguity at the difference fre�

quency  –  (m);   and   are
the code and phase receiver and satellite j clock errors
relative to the GPS time scale, including receiver and
satellite equipment biases in ionosphere�free combi�

nations of measurements  and  (m);  and

 are the equipment biases for the receiver and the

jth satellite in measurement    and  are

the noise errors for measurements   and 
For the PPP mode (user positioning), satellite correc�
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solution. For model (3), there are 7 + 2Msat estimated
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[12]). Due to the presence of decoupled clocks in (3),
the corresponding system of equations is singular; for
Msat > 4, the rank deficiency is two. For brevity, obser�
vation model (3) is further designated as the P3L3A4
model.

In all considered observation models with decou�
pled clocks, integer ambiguities of phase measure�
ments are separated from unmodeled equipment
biases, i.e., these observation models can be used for
implementation of the Integer PPP method.
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measurements with known covariance matrix W–1.
System (4) is inconsistent and underdetermined, i.e.,

 and  and, for rank r of matrix A,
condition  is fulfilled (  is the linear
vector column space of matrix A, i.e., the linear space
spanned by the columns of matrix A and Rm is the vec�
tor space of all real�valued m�dimensional vectors).
This means that system (4) has an infinite set of least�
squares solutions (LS�solutions), i.e. system (4) is sin�
gular (contains rank deficiency).

Multiple computing experiments for observation
models (1)–(3) with decoupled clocks performed for
real GNSS pseudorange and phase measurements of
both GLONASS and GPS systems have shown the
following: in all cases, in the space of estimated
parameters, the coordinate axes corresponding to geo�
metric parameters (Δx, Δy, Δz and ) are orthogo�
nal to null space N(A) of matrix A in system of linear
equations (4). An alternative and more mathemati�
cally abstract form of this feature can be formulated as
the following statement: all vectors x such that

 have zero components corresponding to
geometric parameters. If follows from this feature that
geometric parameters can be estimated unambigu�
ously irrespective of singularity of system (4). For
observation model (3), an additional unambiguously

estimated parameter is receiver code clock error 
In the space of estimated parameters, coordinate axes
corresponding to all other estimated parameters (not

geometric) of system (4) are not orthogonal to null
space  of matrix A; therefore, such parameters
can not be estimated unambiguously.

The approach that uses the above feature is used in
[2, 3, 12, 13] and implicitly in [4]. However, these pub�
lications do not provide theoretical details of the
approach and explanations of the possibility of direct
estimation of some parameters, whereas the remaining
parameters are estimated as linear combinations. In
[14], the independency of the ranks of corresponding
blocks of the design matrix is pointed out as the reason
of such a division of estimated parameters into two
groups. From our point of view, this rank indepen�
dency is just a consequence, whereas the reason is the
described above feature of the orthogonality of the null
space to some coordinate axes.

The revealed above feature of the systems of linear�
ized GNSS equations allows us to formulate the gen�
eral rule for coefficients of non�geometric parameters
in estimated linear combinations. The coefficients
should be chosen in such a way that new estimated
parameters (formed as linear combinations of initial
non�geometric parameters) in the space of initial esti�
mated parameters should correspond to directions
orthogonal to null space  of matrix A. For obser�
vation model P1P2L1L2 (1), the following combina�
tions of ambiguously estimated (non�geometric)
parameters correspond to directions orthogonal to
null space  of matrix A (4):
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(6)

For observation model P3L3A4 (3), the following
combinations of ambiguously estimated (non�geo�

metric) parameters correspond to directions orthogo�
nal to null space  of matrix A (4):

(7)

Directions that are opposite to the directions cor�
responding to combinations of parameters (5)–(7)
(i.e. combinations (5)–(7) taken with opposite signs)
are also orthogonal to null space  of matrix A (4).

3. ALGEBRAIC METHODS FOR REMOVAL 
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IN THE INTEGER PPP METHOD
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division of matrix A in the PPP (by the example of
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where  is the projector (projection matrix)
onto  and along  Functional transforma�
tion (10) produces combinations of variables of system

=  that are estimated unambiguously. Expres�

sion (10) can be written also as  = 0, then system

 =  is extended to the following [14]:

(11)

where matrix  =  has full rank, i.e., system (11)

is inconsistent and overdetermined with unique

LS�solution 
In view of (11), system (8) is transformed to the fol�

lowing system:

(12)

Generally, basis S can be chosen arbitrarily accord�
ing to (9) (Fig. 1). However, in practice, it is more con�
venient to choose basis S so that subspace  is
orthogonal to such number of coordinate axes that is
equal to the rank deficiency in system of equations (4).
In this case, components of vectors xS corresponding
to these orthogonal axes are zeros and the remaining
components of vectors xS are biased by the values of
combinations of variables corresponding to orthogo�
nal axes. Then, instead of system (12), the following
system can be used:

(13)

where  contains only nonzero components of vector
xS, and, in matrix , there are no columns corre�
sponding to the coordinate axes orthogonal to .
Here,  is a full rank matrix and the length of vector

 equals the rank of matrix  Thus, transition from
system (4) to system (13) reduces the number of esti�
mated linear combinations in vector  to the value of
the rank of matrix 

Functional components of subvector xII in (8)
whose coordinate axes are orthogonal to the chosen
subspace  form linear combinations with other
functional components of subvector xII in (8). For this
reason, subspace  should be chosen orthogonal to
some coordinate axes so as to preserve the integer
nature of linear combinations of integer functional
components of subvector xII in (8). For this purpose,
base S in observation model (1) should be chosen so
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that subspace  is orthogonal to three coordinate

axes corresponding to two ambiguities  and

 and ionospheric delay  of the signal of the
jth satellite. These three parameters will form linear
estimated combinations with other parameters and
keep integrality of the combinations of ambiguities.
In observation models GL_P1P2L1L2 (2) and
P3L3A4 (3), such basis S should be chosen that sub�
space  is orthogonal to three coordinate axes

corresponding to two ambiguities  and  and

ionospheric delay , and two coordinate axes cor�

responding to two ambiguities  and  for
the chosen jth satellite.

4. FILTER EXCLUDING THE INFLUENCE 
OF IONOSPHERIC DELAYS ON ESTIMATES 

OF THE USER COORDINATES

The presence of ionospheric delays as nuisance
parameters in observation models P1P2L1L2 (1) and
GL_P1P2L1L2 (2) hampers application of these
models in practice. These models can be used with
direct estimation of combinations of ionospheric
delays in the user solution, whereas, in the network
solution the estimated satellite decoupled clocks
become biased by values of ionospheric delays of cor�
responding satellites. Thus, the PPP network solution
cannot be solved with in the presence of ionospheric
delays as nuisance parameters. In [9, 10, 15], a filtering
method allowing one to avoid estimation of nuisance
parameters (a filter excluding the influence of iono�
spheric delays on estimated user coordinates) is
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described. For GNSS, systems of equations of type (4)
can be written as follows:

(14)

where xA is the vector of useful estimated parameters;
xB is the vector of nuisance estimated parameters,
which are the ionospheric delays in the network solu�
tion with observation models (1) and (2); and AA and
AB are the corresponding blocks of the design matrix.
It is shown in [8, 16] that the maximum�likelihood
estimate  obtained from solution of system (14) can
also be obtained from solution to the following
reduced system:

(15)

under the condition of replacement of weight
matrix W with modified weight matrix 

 during the maximum�likeli�
hood estimation.

Based on reduced model (15) and modified weight
matrix Wa, it is possible to form the Kalman filter fil�
tering only useful parameter xa (filter excluding the
influence of ionospheric delays on estimated user
coordinates). The estimate of estimated parameters xa
at the vth filtering epoch in this filter is calculated as

(16)

where  is the prediction matrix for vector xa from

the (v�1)th to the vth filtering epoch,  = 
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riance matrix of the process noise,  is the covariance
matrix of estimation errors of vector  and  is the
modified weight matrix of vector of measurements y

v
 at

the vth filtering epoch. In (14), vector of measurements
y depends on not only vector of useful estimated param�
eters xA but also vector of nuisance parameters xB. The
filter excluding the influence of ionospheric delays on
estimated user coordinates is quasi�optimal, because, in
this filtering method, there is no estimation and predic�
tion of nuisance parameters xB. Expression (16) is a
kind of the covariance form of the Kalman filter, which
allows one to work with singular weight matrix 

5. USER SOLUTION 
IN THE INTEGER PPP METHOD

In this study, a comparative analysis of the Float
PPP and Integer PPP methods was done with the use
of different GPS observation models, different accu�
racies of ephemerides and measurement data from
receivers located in different geographical regions. To
implement the Integer PPP method, decoupled satel�
lite clocks, which were calculated by NRCan with the
use of the global network of ground stations and pro�
vided for test purposes, were used.

Figure 2 shows comparative results for positioning
in the Integer PPP (observation model P3L3A4 (3))
and Float PPP (observation model P3L3—iono�
sphere�free combinations of code and phase measure�
ments) methods. Shown results are for measurements
obtained from the IGS (International GNSS Service)
station BRUS in 2008 year (the sampling interval is
30 seconds). Rapid IGS orbits were used for Integer PPP

G
v

�

,a
v aW

v

.aW
v

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

360032002800240016008000 1200400 2000 t, s

0.9

1.0
3Der, m

3

2

1

4

Fig. 2. Comparative plots of 3D positioning error 3Der as functions of measurement time t for the Integer PPP method (curve 1
is the P3L3A4 fixed solution and curve 2 is the P3L3A4 float solution) and the Float PPP method (curve 3 is the P3L3 Final and
curve 4 is the P3L3).
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processing; Rapid and Final orbits and clocks were used
for Float PPP processing. The convergence period of the
Integer PPP fixed solution (curve 1) to an accuracy of 1
cm is about 600 sec, whereas the convergence period of
the Float PPP solution (curve 4) is 18 hours (after 1 hour
of processing, the Float PPP 3D position error is 0.23 m,
Fig. 2). Figure 2 also shows that the maximum accuracy
and the best convergence period of the Float PPP
method (curve 3, Final IGS products) are worse than
those of the Integer PPP float solution calculated for
observation model (3) (curve 2).

6. NETWORK SOLUTION 
IN THE INTEGER PPP METHOD

The integer PPP method requires as network prod�
ucts not only satellite orbits (high�accuracy values of
satellite coordinates) but also application of decou�

pled (according to the measurement type and fre�
quency) biases to the satellite clocks (observation
models (1)–(3)).

In this study, we calculated a local network solu�
tion, i.e., decoupled satellite clocks for GPS observa�
tion model P3L3A4 (3) were calculated based on the
local network of European stations shown in Fig. 3
with large circles (Nst = 5). To simplify the calcula�
tions, it was assumed that all Nst = 5 stations collected
measurements from the same set of Msat = 6 satellites.
The time interval of measurements that satisfied this
restriction was 2 hours and 10 min.

For observation model (3), the system of linear
equations corresponding to the network solution with
Nst stations and Msat satellites can be written in follow�
ing matrix form:

(17)

where Nmeas = 3NstMsat is the number of measurements
in yN (index N means Network); Nest = 3Msat + 4Nst +
2MsatNst is the number of estimated parameters;

 is the block of design matrix AN of the
network solution corresponding to geometric parame�

ters in the network solution  (Nst troposphere

delays  for network stations);
 =  are the blocks of design

matrix AN of the network solution corresponding to

vectors    = 
are the blocks of design matrix AN of the network solu�

tion corresponding to vectors   and 
with decoupled satellite clocks of Msat satellites for

measurements  , and , respectively;

 and  are the vectors of

integer ambiguities  and  corresponding

to measurements  and  (m).

Decoupled satellite clocks  , and  in

(17) are estimated ambiguously as combinations 

 and  with integer components of vector 
i.e., they are biased by integer values. It is not an obsta�
cle to apply them for the Integer PPP method, because
integer values of biases in these combinations are
taken into account by user during ambiguity resolu�
tion. 
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station (reference, REF) whose decoupled clocks

  and  are not estimated in the
network solution. After that, the value of the rank defi�

ciency in (17) becomes (Nst + Msat –1) for blocks 

and 

Basis S supplementing  to 

 =  is chosen so that  is
orthogonal to such a number of coordinate axes corre�

sponding to parameters  (17) that equals the rank
deficiency of matrix AN. In this case, all components of

vector  (i.e., geometric parameters ) are esti�
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mated unambiguously and all nonzero components of

vector  are estimated ambiguously as combinations
(inconsistent underdetermined system (17) is trans�
formed to an inconsistent overdetermined system with
a unique least�squares solution. To preserve the inte�
grality of estimated linear combinations of ambiguities

in vector  it is necessary to choose  so as to
make it orthogonal to the coordinate axes of ambigu�

ities  and   which
correspond to (Nst + Msat – 1) satellite–station pairs in
the network. As has been shown in [17], the choice of
such a set of ambiguities can be formulated in terms of
the graph theory. A network with Nst stations and Msat

satellites can be described with a bipartite graph of
measurements (Fig. 4). The edges in such a graph cor�

respond to integer phase ambiguities  or 

 To remove the rank deficiency in

blocks  and , one graph can be used. Subspace
 is chosen to be orthogonal to the coordinate axes

of such ambiguities, which correspond to the edges of
the minimum spanning tree [17] (MST, Fig. 4, edges
of the MST are shown with bold lines).

The efficiency of application of decoupled clocks
calculated inside the local network in the Integer PPP
method was compared with application of decoupled
clocks calculated by NRCan with the use of the global
network of stations. Figure 5 shows 3D user position�
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ing errors (station BRUS) for the Integer PPP method
with the use of two aforementioned sets of satellite
decoupled clocks. One can see that satellite decoupled
clocks from local and global networks provide compa�
rable convergence period for the Integer PPP solution.
Figure 6 shows the same comparative results for

another station in the considered local network (sta�
tion OPMT). One can see that, for the OPMT station,
there is a step in the estimated coordinates in the case
of application of satellite decoupled clocks from both
global and local networks. Hypothetically, this step
and general reduction of the user positioning quality
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Fig. 5. Values of 3D positioning error 3Der as a function of measurement time t for the Integer PPP method using decoupled sat�
ellite clocks from global and local networks, station BRUS: integer solution using decoupled satellite clocks from (1) local and
(2) global networks; real�valued solution using decoupled satellite clocks from (3) local and (4) global networks.
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Fig. 6. Values of 3D positioning error 3Der as a function of measurement time t for the Integer PPP method using decoupled sat�
ellite clocks from global and local networks, station OPMT: integer solution using decoupled satellite clocks from (1) local and
(2) global networks; real�valued solution using decoupled satellite clocks from (3) local and (4) global networks.



870

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 8  2015

POVALYAEV, PODKORYTOV

for the OPMT station is associated with worse envi�
ronmental conditions around the receiver at the
OPMT station as compared to the BRUS station.

Currently, satellite decoupled clocks for observa�
tion models with initial frequencies P1P2L1L2 (1) and
GL_P1P2L1L2 (2) are not calculated. For this reason,
the local network solution was calculated for observa�
tion model P3L3A4 (3), which corresponds to decou�
pled satellite clocks calculated by NRCan.

CONCLUSIONS

The PPP with ambiguity resolution of phase mea�
surements (Integer PPP) in GNSS has been consid�
ered. The basic underlying feature of the singular sys�
tem of linearized GNSS equations has been formu�
lated. In the Integer PPP method, this feature allows
one to divide all estimated parameters into two groups
and, in one of them, the estimated parameters are esti�
mated as linear combinations. Using this feature and
the theory of S�Transformations, algebraic details of
resolving of the rank deficiency have been described
for user and network solutions. Observation models
with decoupled clocks at initial frequencies for GPS
and GLONASS have been developed. For these mod�
els, directions orthogonal to the null space of the
design matrix have been described. Significant reduc�
tion of the convergence period (from 18 hours to
600 seconds) for the Integer PPP user solution due to
resolution of the ambiguity of phase measurements
has been demonstrated. Qualities of the satellite
decoupled clocks calculated in local and global net�
works have been compared. It has been concluded that
quality of satellite decoupled clocks inside the local
network is comparable for local and global networks. A
filtering method that allows one to avoid estimation of
nuisance parameters when working with the presented
observation models at initial GPS and GLONASS fre�
quencies has been described. Thus, new algebraic
details of the Integer PPP method in GNSS have been
described and experimental results which correspond
to similar experimental results published before have
been presented.
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