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INTRODUCTION

Image restoration is an important subject of
research in image processing, because its methods and
technologies can be applied for restoration of images
corrupted due to the imperfectness of the imaging pro�
cess [1]. There is a wide class of distortions [2, 3], such
as motion aberrations [2, 3], geometrical distortions,
nonuniform scene illumination, influence of the envi�
ronment (fog, clouds, etc.) [4, 6], noise (impulse
noise, white noise, etc.), and errors of sensors in imag�
ing systems. For example, focal�plane array sensors
are subject to additive distortions [7]. These distor�
tions are spatially nonuniform and arise from the dif�
ference between the characteristics of individual sen�
sors in the array [8]. An example of multiplicative
interferences is the kind of distortions arising from
nonuniform scene illumination [9]. In this paper, we
will consider two types of interferences: additive and
multiplicative. Most existing methods of image resto�
ration use only one observed image [10–12]. Recently,
an algorithm was proposed for restoration of additive
distortions with the use of three observed images
obtained by means of microscanning [13–16].
Microscanning is a technique of time�sequential input
of the same scene with a small displacement of the
camera relative to the observed scene [17]. This tech�
nique can be applied to image restoration problems
only if the initial image signal and interferences can be
mutually displaced in space in a series of observed

images obtained with the use of microscanning.
Microscanning can be performed by means of con�
trolled displacements of the camera or by controlled
displacements of the light source (in the problem of
elimination of the nonuniformity of illumination). In
this study, we use five observed images obtained by
means of isotropic microscanning. For this case, a sys�
tem of linear equations is obtained. Since the compu�
tational complexity of the method is high, a fast algo�
rithm enabling one to restore images with a high speed
is proposed. The accuracy of image reconstruction in
the cases of nonuniform illumination and a strong
additive interference is estimated.

The structure of the paper is the following. Section 1
presents the methods for image restoration from addi�
tive and multiplicative interferences. In Section 2, a
fast algorithm for image restoration is described.
Results of computer simulation are presented in Sec�
tion 3. Our conclusions are presented in the end of this
paper.

1. METHODS OF IMAGE RESTORATION

Let us introduce some useful notations and defini�
tions. We assume that {st(k, l), t = 1, 2, …, T} is the
observed image, where t is the index of the image in a
time sequence recorded in the process of microscan�
ning, T is the number of observed images (3 or 5), and
(k, l) are the pixel coordinates. Without loss of gener�
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ality, we can assume that each image has a size of
M × M pixels, where M = 2m and m is a positive integer
number. Let {f(k, l)}, {b(k, l}, and {a(k, l)} denote the
initial image, the additive interference, and the multi�
plicative interference, respectively. Assume that these
images are time�invariant during the capture proce�
dure. Let {nt(k, l)} be a time�varying Gaussian white
noise with zero mean. Since the model of distortion
with five observed images involves the model with
three images, we assume that T = 5.

1.1. Additive Model of Distortion

If the image is distorted by an inhomogeneous
additive interference, the observed scene can be
described as

By means of microscanning, four successive frames
with vertical and horizontal displacements by one
pixel are obtained as

Using these expressions, let us calculate matrices
R1 and R2 of the vertical gradient and matrices C1 and
C2 of the horizontal gradient. First of all, we set the
boundary elements of the matrices to zero as follows:

s1 k l,( ) b k l,( ) f k l,( ) n1 k l,( ),+ +=

1 k M, 1 l M.≤ ≤≤ ≤

s2 k l,( ) b k 1– l,( ) f k l,( ) n2 k l,( ),+ +=

1 k M, 1 l M,≤ ≤≤ ≤

s3 k l,( ) b k l 1–,( ) f k l,( ) n3 k l,( ),+ +=

1 k M, 1 l M,≤ ≤≤ ≤

s4 k l,( ) b k 1+ l,( ) f k l,( ) n4 k l,( ),+ +=

1 k M, 1 l M,≤ ≤≤ ≤

s5 k l,( ) b k l 1+,( ) f k l,( ) n5 k l,( ),+ +=

1 k M, 1 l M.≤ ≤≤ ≤

R1 M l,( ) 0, R2 k 1,( ) 0, C1 M l,( ) 0,= = =

C1 k 1,( ) 0, 1 k M, 1 l M.≤ ≤≤ ≤=

The remaining elements of the matrix are calcu�
lated as follows:

Then we want to minimize the variance of the addi�
tive noise contained in these matrices. The objective
function to be minimized can be written as follows:

(1)

where   and  define the regions of supports
of these functions. These regions are shown in Fig. 1.

In expression (1),  contains information on the
noise in the central part of the image without regard to
the boundaries, i.e.,

(2)

R1 k l,( ) s1 k l,( ) s2 k 1+ l,( )–=

=  f k l,( ) f k 1+ l,( )– n1 k l,( ) n2 k 1+ l,( ),–+

1 k M, 1 l M;≤ ≤≤ ≤

R2 k l,( ) s1 k l,( ) s4 k 1– l,( )–=

=  f k l,( ) f k 1– l,( )– n1 k l,( ) n4 k 1– l,( ),–+

1 k M, 1 l M;≤ ≤≤ ≤

C1 k l,( ) s1 k l,( ) s3 k l 1+,( )–=

=  f k l,( ) f k l 1+,( )– n1 k l,( ) n3 k l 1+,( ),–+

1 k M, 1 l M;≤ ≤≤ ≤

C2 k l,( ) s1 k l,( ) s5 k l 1–,( )–=

=  f k l,( ) f k l 1–,( )– n1 k l,( ) n5 k l 1–,( ),–+

1 k M, 1 l M.≤ ≤≤ ≤

FA Fa
A Fb

A Fc
A
,+ +=

Fa
A
, Fb

A
, Fc

A

Fa
A

Fa
A R1 k l,( ) f k l,( )– f k 1+ l,( )+[ ]2(

l 2=

M 1–

∑
k 2=

M 1–

∑=

+ C1 k l,( ) f k l,( )– f k l 1+,( )+[ ]2 R2 k l,( ) f k l,( )–[+

+ f k 1– l,( ) ]2 C2 k l,( ) f k l,( )– f k l 1–,( )+[ ]+
2
).

Fig. 1. Spatial support regions of functions used for construction of the objective functions: (a) central part, (b) boundary ele�
ments except for corner elements, and (c) corner elements.
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 contains information on the noise along the
boundaries of the image without regard to the corner
elements,

(3)

 is based on the information on the noise at four
corner points of the image:

(4)

Minimization of objective function (1) with respect
to f(k, l) leads to a system of linear equations, which
can be written in the matrix form as

Af = u,

where A is the M2 × M2 matrix, f is the vector version
of the initial image with dimensions M2 × 1, and vector
u is defined as

u = 

and its size is M2 × 1. Vectors uR and uC are calculated
as follows:

Fb
A

Fb
A R1 1 l,( ) f 1 l,( )– f 2 l,( )+[ ]2(

l 2=

M 1–

∑ C1 1 l,( )[+=

– f 1 l,( ) f 1 l 1+,( )+ ]2 C2 1 l,( ) f 1 l,( )– f 1 l 1–,( )+[ ]2 )+

+ R1 k M,( ) f k M,( )– f k 1+ M,( )+[ ]2(
k 2=

M 1–

∑ R2 k M,( )[+

– f k M,( ) f k 1– M,( )+ ]2 C2 k M,( ) f k M,( )–[+

+ f k M 1–,( )]2) C1 M l,( ) f M l,( )– f M l 1+,( )+[ ]2(
l 2=

M 1–

∑+

+ R2 M l,( ) f M l,( )– f M 1– l,( )+[ ]2 C2 M l,( )[+

– f M l,( ) f M l 1–,( )+ ]2 ) R1 k 1,( ) f k 1,( )–[(
k 2=

M 1–

∑+

+ f k 1+ 1,( ) ]2 C1 k 1,( ) f k 1,( )– f k 2,( )+[ ]2+

+ R2 k 1,( ) f k 1,( )– f k 1– 1,( )+[ ]2 ).

Fc
A

Fc
A R1 1 1,( ) f 1 1,( )– f 2 1,( )+[ ]2 C1 1 1,( )[+=

– f 1 1,( ) f 1 2,( )+ ]2 R1 1 M,( ) f 1 M,( )– f 2 M,( )+[ ]2+

+ C2 1 M,( ) f 1 M,( )– f 1 M 1–,( )+[ ]2 R2 M M,( )[+

– f M M,( ) f M 1– M,( )+ ]2 C2 M M,( ) f M M,( )–[+

– f M M 1–,( ) ]2 C1 M 1,( ) f M 1,( )– f M 2,( )+[ ]2+

+ R2 M 1,( ) f M 1,( )– f M 1– 1,( )+[ ]2
.

uR uC,+

uR l( ) R1 1 l,( ) R2 2 l,( ), for 1 l M,≤ ≤–=

uR kM l+( ) R1 k 1+ l,( ) R1 k l,( )– R2 k 1+ l,( )+=

– R2 k 2+ l,( ), for 1 l M, 1 k M 2– ,≤ ≤≤ ≤

Matrix A is sparse and its nonzero elements can be
represented as

A = 

where matrices A1, A2, and A3 can be written in the
explicit form as

A1 = 

A2 = 

The rank of the matrix A is M2 – 1; therefore, the
initial image can be restored if one pixel of the image
will be preliminary set to a certain constant, e.g., the
last pixel will be set to zero. After restoration, the
obtained image is processes pointwise so that the mean
value is equal to the mean of the initial image. For
solving the system of equations, we use the efficient
conjugate gradient method [18]. The computational
complexity of the method is determined by the order
of calculation of the conjugate gradient and the size of
the restored image. The complexity is estimated as
O(np) operations, where p is the number of nonzero ele�

uR M2 l–( ) –R1 M 1– M l–,( ) R2 M M l–,( ),+=

for 0 l M 1,–≤ ≤
uC kM 1+( ) –C1 k 1+ 1,( ) C2 k 1+ 2,( ),+=

for 0 k M 1,–≤ ≤
uC kM l+( ) –C1 k 1+ 1,( ) C1 k 1+ l 1–,( )–=

+ C2 k 1+ l,( ) C2 k 1+ l 1+,( ),–

for 2 l M 1, 0– k M 1,–≤ ≤ ≤ ≤
uC k( ) –C1 k M 1–,( ) C2 k M,( ),+=

for 0 k M 1– .≤ ≤

A1 A3 0 0 0 0

A3 A2 A3 0 0 0

0 A3 A2 A3 0 0

0 0    0

0 0 0 A3 A2 A3

0 0 0 0 A3 A1

,… … …

2 1– 0 0 0 0

1– 3 1– 0 0 0

0 1– 3 1– 0 0

0 0    0

0 0 0 1– 3 1–

0 0 0 0 1– 2

,… … …

3 1– 0 0 0 0

1– 4 1– 0 0 0

0 1– 4 1– 0 0

0 0    0

0 0 0 1– 4 1–

0 0 0 0 1– 3

,… … …

A3 diag 1– 1– … 1–, , ,[ ].=
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ments of the matrix and n is the number of iterations
needed for solving the system of equations. In our case,
p = O(5M2) and n = qM, where q depends on the solution
accuracy and Q ∈ [3, 10] in the conducted experiments.
Therefore, the computational complexity of the method
can be estimated as O(5qM3) operations.

1.2. Multiplicative Model of Distortion

If the image is distorted by a multiplicative interfer�
ence, the model of the image can be expressed as

where initial image {f(k, l)} is distorted by a multiplica�
tive interference {a(k, l)} and additionally distorted by a
time�varying additive noise {n1(k, l)}. Assuming that
microscanning is capable of distinguishing the initial
image from the interference, we can obtain several
frames of the observed scene, slightly displaced with
respect to the original image, in the following form:

Now we can define four partial matrices using the rela�
tions between the rows and columns of the observed
images. First of all, we set the boundary elements of
the matrices to 1 as follows:

The remaining elements of the matrix are calcu�
lated as follows:

(5)

(6)

(7)

(8)

We can see that the multiplicative interference in the
matrices is eliminated if the observed image does not
contain an additive noise. Therefore, for small fluctua�
tions of the additive noise, matrices in Eqs. (5)–(8) are
close to the corresponding partial matrices constructed

s1 k l,( ) a k l,( )f k l,( ) n1 k l,( ),+=

1 k M, 1 l M,≤ ≤≤ ≤

s2 k l,( ) a k 1– l,( )f k l,( ) n2 k l,( ),+=

1 k M, 1 l M,≤ ≤≤ ≤

s3 k l,( ) a k l 1–,( )f k l,( ) n3 k l,( ),+=

1 k M, 1 l M,≤ ≤≤ ≤

s4 k l,( ) a k 1+ l,( )f k l,( ) n4 k l,( ),+=

1 k M, 1 l M,≤ ≤≤ ≤

s5 k l,( ) a k l 1+,( )f k l,( ) n5 k l,( ),+=

1 k M, 1 l M.≤ ≤≤ ≤

V1 M l,( ) 1, V2 1 l,( ) 1, H1 k M,( ) 1,= = =

H2 k 1,( ) 1, 1 k M, 1 l M.≤ ≤≤ ≤=

V1 k l,( )
s1 k l,( )

s2 k 1+ l,( )
���������������������, 1 k M, 1 l M;≤ ≤≤ ≤=

V2 k l,( )
s1 k l,( )

s4 k 1– l,( )
���������������������, 1 k M, 1 l M;≤ ≤≤ ≤=

H1 k l,( )
s1 k l,( )

s3 k l 1+,( )
���������������������, 1 k M, 1 l M;≤ ≤≤ ≤=

H2 k l,( )
s1 k l,( )

s5 k l 1–,( )
���������������������, 1 k M, 1 l M.≤ ≤≤ ≤=

on the basis of the initial image and its displaced versions.
Taking into account properties of the logarithmic func�
tion (monotonicity and ln(x/y) = ln(x) – ln(y), let us
introduce the following objective function:

FM = 

where the support regions of functions   and

 are the same as for additive model (1)–(4). These
functions are defined as follows:

Fa
M Fb

M Fc
M

,+ +

Fa
M

, Fb
M

,

Fc
M

Fa
M V1 k l,( )( )ln f k l,( )( )ln–[(

l 2=

M 1–

∑
k 2=

M 1–

∑=

+ f k 1+ l,( )( )ln ]2 H1 k l,( )( )ln f k l,( )( )ln–[+

+ f k l 1+,( )( )ln ]2 V2 k l,( )( )ln f k l,( )( )ln–[+

+ f k 1– l,( )( )ln ]2 H2 k l,( )( )ln f k l,( )( )ln–[+

+ f k l 1–,( )( )ln ]2 ).

Fb
M V1 1 l,( )( )ln f 1 l,( )( )ln– f 2 l,( )( )ln ]2+[(

l 2=

M 1–

∑=

+ H1 1 l,( )( )ln f 1 l,( )( )ln– f 1 l 1+,( )( )ln ]+[ 2

+ H2 1 l,( )( )ln f 1 l,( )( )ln– f 1 l 1–,( )( )ln ]+[ 2 )

+ V1 k 1,( )( )ln[ f k 1,( )( )ln– f k 1+ 1,( )( )ln ]2+(
k 2=

M 1–

∑

+ H1 k 1,( )( )ln f k 1,( )( )ln– f k 2,( )( )ln+[ ]2

+ V2 k 1,( )( )ln f k 1,( )( )ln– f k 1– 1,( )( )ln+[ ]2 )

+ V1 k M,( )( )ln f k M,( )( )ln– f k 1+ M,( )( )ln ]2+[(
k 2=

M 1–

∑

+ V2 k M,( )( )ln f k M,( )( )ln– f k 1– M,( )( )ln ]+[ 2

+ H2 k M,( )( )ln f k M,( )( )ln– f k M 1–,( )( )ln ]+[ 2 )

+ H1 M l,( )( )ln[ f M l,( )( )ln– f M l 1+,( )( )ln ]2+(
l 2=

M 1–

∑

+ V2 M l,( )( )ln f M l,( )( )ln– f M 1– l,( )( )ln+[ ]2

+ H2 M l,( )( )ln f M l,( )( )ln– f M l 1–,( )( )ln+[ ]2 ).

Fc
M V1 1 1,( )( )ln f 1 1,( )( )ln– f 2 1,( )( )ln ]2+[=

+ H1 1 1,( )( )ln f 1 1,( )( )ln– f 1 2,( )( )ln ]+[ 2

+ V1 1 M,( )( )ln f 1 M,( )( )ln– f 2 M,( )( )ln ]+[ 2
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2. FAST RESTORATION ALGORITHM

Since the computational complexity of the method
proposed is high, we developed a fast restoration algo�
rithm. The idea of this algorithm is the following: let us
perform a pyramidal decomposition of the observed
images to images of smaller sizes, apply the algorithms
to all smaller images, and then reconstruct the
restored image from the smaller restored images. For
T = 5, the pyramidal decomposition of the observed
M × M image s1(k, l) leads to four smaller images with
dimensions M/2 × M/2, which are obtained from the
observed image by decimation over even and odd indi�
ces along each coordinate. Figure 2 shows an example
of the decomposition of the image for M = 4 into four
smaller images with sizes of 2 × 2 pixels.

Moreover, for each smaller image, we can form its
four shifted versions from the parent larger�size image
(as if by simulating the microscanning process on this
level of pyramidal decomposition). Repeating this
decomposition process, we can obtain the complete
pyramidal set of images. It should be noted that this set
enables one to restore larger images from smaller
images at any level of decomposition.

Let d = 1, …, log(M) – 1 be the level of pyramidal

decomposition and  ≡  t = 1, 2, …, T} be
some set of observed images. The number of sets of
observed images at the dth level of the pyramid is 4d.
Decomposition of a set of observed images into four sets
of small observed images at level d is performed as follows:

(9)

for 1 ≤ k ≤  1 ≤ l ≤ ,

+ H2 1 M,( )( )ln[ f 1 M,( )( )ln– f 1 M 1–,( )( )ln ]2+

+ V2 M M,( )( )ln f M M,( )( )ln– f M 1– M,( )( )ln+[ ]2

+ H2 M M,( )( )ln f M M,( )( )ln– f M M 1–,( )( )ln+[ ]2

+ H1 M 1,( )( )ln f M 1,( )( )ln– f M 2,( )( )ln ]2+[

+ V2 M 1,( )( )ln f M 1,( )( )ln– f M 1– 1,( )( )ln ]+[ 2
.

st
0 k l,( ){ st k l,( ),

s1
d k l; 1,( ) s1

d 1– 2k 1– 2l 1–,( ),=

s1
d k l; 2,( ) s1

d 1– 2k 2l 1–,( ),=

s1
d k l; 3,( ) s1

d 1– 2k 1– 2l,( ),=

s1
d k l; 4,( ) s1

d 1– 2k 2l,( ),=

M

2d
����, M

2d
����

s2
d k l; 1,( ) s2

d 1– 2k 1– 2l 1–,( ) s2
d 1– 2k 2– 2l 1–,( )+=

– s1
d 1–

2k 2– 2l 1–,( ),

s2
d k l; 2,( ) s2

d 1– 2k 2l 1–,( ) s2
d 1– 2k 1– 2l 1–,( )+=

– s1
d 1– 2k 2– 2l 1–,( ),

(10)

for 1 ≤ k ≤  1 ≤ l ≤ ,

(11)

for 1 ≤ k ≤  1 ≤ l ≤ ,

(12)

s2
d k l; 3,( ) s2

d 1– 2k 1– 2l,( ) s2
d 1– 2k 2– 2l,( )+=

– s1
d 1– 2k 2– 2l,( ),

s2
d k l; 4,( ) s2

d 1– 2k 2l,( ) s2
d 1– 2k 1– 2l,( )+=

– s1
d 1– 2k 1– 2l,( )

M

2d
����, M

2d
����

s3
d k l; 1,( ) s3

d 1– 2k 1– 2l 1–,( ) s3
d 1– 2k 1– 2l 2–,( )+=

– s1
d 1– 2k 1– 2l 2–,( ),

s3
d k l; 2,( ) s3

d 1– 2k 2l 1–,( ) s3
d 1– 2k 2l 2–,( )+=

– s1
d 1– 2k 2l 2–,( ),

s3
d k l; 3,( ) s3

d 1– 2k 1– 2l,( ) s3
d 1– 2k 1– 2l 1–,( )+=

– s1
d 1– 2k 1– 2l 1–,( ),

s3
d k l; 4,( ) s3

d 1– 2k 2l,( ) s3
d 1– 2k 2l 1–,( )+=

– s1
d 1– 2k 2l 1–,( )

M

2d
����, M

2d
����

s4
d k l; 1,( ) s4

d 1– 2k 1– 2l 1–,( ) s4
d 1– 2k 2l 1–,( )+=

– s1
d 1– 2k 2l 1–,( ),

s4
d k l; 2,( ) s3

d 1– 2k 2l 1–,( ) s4
d 1– 2k 1+ 2l 1–,( )+=

– s1
d 1– 2k 1+ 2l 1–,( ),

s4
d k l; 3,( ) s4

d 1– 2k 1– 2l,( ) s4
d 1– 2k 2l,( )+=

– s1
d 1–

2k 2l,( ),

s4
d k l; 4,( ) s4

d 1– 2k 2l,( ) s4
d 1– 2k 1+ 2l,( )+=

– s1
d 1– 2k 1+ 2l,( )

Fig. 2. Illustration of the pyramidal decomposition of the
observed image for M = 4.



1456

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59  No. 12  2014

LÓPEZ�MARTÍNEZ et al.

for 1 ≤ k ≤  1 ≤ l ≤ ,

(13)

for 1 ≤ k ≤  1 ≤ l ≤ .

The flow chart of the fast restoration algorithm is
presented in Fig. 3. The algorithm consists of the fol�
lowing steps:

1. Specify the desired level of pyramidal decompo�
sition.

2. Decompose input images into smaller images
according to expressions (9)–(13).

3. If the desired level of decomposition is reached,
then go to step 4 else go to step 2.

4. Restore smaller images by the conjugate gradient
method.

5. Reconstruct the restored image from the set of
smaller images obtained in step 4.

The computational complexity of the algorithm is
determined mainly by the complexity of the conjugate
gradient method at a given level of decomposition,

M

2d
����, M

2d
����

s5
d k l; 1,( ) s5

d 1– 2k 1– 2l 1–,( ) s5
d 1– 2k 1– 2l,( )+=

– s1
d 1– 2k 1– 2l,( ),

s5
d k l; 2,( ) s5

d 1–
2k 2l 1–,( ) s5

d 1–
2k 2l,( )+=

– s1
d 1– 2k 2l,( ),

s5
d k l; 3,( ) s5

d 1– 2k 1– 2l,( ) s5
d 1– 2k 1– 2l 1+,( )+=

– s1
d 1– 2k 1– 2l 1+,( ),

s5
d k l; 4,( ) s5

d 1– 2k 2l,( ) s5
d 1– 2k 2l 1+,( )+=

– s1
d 1– 2k 2l 1+,( )

M

2d
����, M

2d
����

which can be estimated as O  Additional

expenditures stem from the pyramidal decomposition
process and the process of reconstruction of the initial
image from small images.

3. COMPUTER SIMULATION

In this section, we analyze the quality of restoration
by the proposed methods in terms of the root�mean�
square error (RMSE), the visual criterion of quality,
and the robustness to the position errors of the matrix
receiver. The RMSE is defined as

RMSE = 

where {f(k, l)} and  are the original and
restored images, respectively. The size of the images
used in our experiments was 256 × 256 pixels, and the
signal range was [0, 255]. All experiments were con�
ducted on a computer with Intel Core 2 Duo processor
(frequency 2.26 GHz, 2 GB RAM). In order to guar�
antee statistically correct results, each experiment was
repeated 30 times with different realizations of the
input noise. The conjugate gradient iterative method
was used for solving the systems of linear equations
with the following termination condition: the maxi�
mum deviation of the signal at the current step from
the signal at the previous step is no more than 10–10.
The visual criterion was the enhanced difference
between the initial and final images [19]:

EDIF(k, l) = 

5QM3

2d
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f k l,( ) f̃ k l,( )–( )
2

k l,

M

∑

M2
�����������������������������������������,

f̃ k l,( ){ }

c1 f k l,( ) f̃ k l,( )–( ) c2,+
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Fig. 3. Flow chart of the fast restoration algorithm.
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where c1 and c2 are normalization constants, which
take in our experiments the values c1 = 4 and c2 = 128
in the additive model and c1 = 1 and c2 = 128 in the
multiplicative model. If, at a certain point, the error of
restoration is zero, the corresponding enhanced dif�
ference is represented by gray color defined by con�
stant c2. Maximum errors are represented in the
enhanced difference image by either black or white
color (the values of 0 or 255, respectively).

One of the most popular methods of restoration is
the linear optimal filtering with the quadratic crite�
rion. However, this method is applicable only to spa�
tially homogeneous (stationary) signals. In these con�
ditions, an appropriate method is the Wiener filtering
[3]. The frequency characteristic of an empiric Wiener
filter in the presence of only an additive interference is
written as

Hw(ω) = 

where PS(ω) is the spectral density of the observed dis�
torted scene and PN(ω) is the spectral density of the
additive interference. This filter was synthesized with
known parameters of distortions, which, strictly
speaking, overestimates the real ability of restoration
with the use of this method. It should be noted that the
methods proposed do not use information on distor�
tions. In the case of the multiplicative model, we first
performed elementwise logarithmation of the
observed image, ignoring the additive noise. There�
fore, the multiplicative model turns into the additive
model. The transformed signal was subject to the
Wiener filtering and the result was subject to the ele�
mentwise exponentiation.

3.1. Additive Inhomogeneous Interferences

Figures 4a–4c illustrate the original test image,
the image of the inhomogeneous interference, and

PS ω( ) PN ω( )–
PS ω( )

������������������������������,

the distorted image additionally degraded by white
Gaussian noise with zero mean and a standard devi�
ation (STD) of 2. The mean and the STD of the
interference are 130 and 40, respectively. Figures 5a
and 5c show images restored with the use of three and
five observed images, respectively. Figures 5b and 5d
show the enhanced difference between the original
image and the images restored with the use of three
and five observed images, respectively. As was
expected, isotropic microscanning with five images
provides better quality of restoration. Figure 6 shows
the results of reconstruction with respect to the
RMSE for three observed images (Am3), for five
observed images (Am5), and for the Wiener filtering
versus the STD of the additive input noise. It should
be noted that the restoration algorithms proposed in
this paper restore the image significantly better than
the Wiener filter with known parameters. This is also
explained by the fact that additive interferences are
not spatially homogeneous and, therefore, applica�
tion of the Wiener filter to this model is incorrect.
Table 1 presents the results of restoration with the use
of the proposed fast algorithm in terms of the perfor�
mance time as a function of the level in the pyramid.
The corresponding plots with the restoration errors
are presented in Fig. 7. In these experiments, the
STD of the noise is 2. The algorithm becomes faster
with an increase in the level of the pyramid, but the
quality of restoration rapidly degrades. Figure 8
shows images restored by the fast algorithm with five
observed images for the following pyramid levels: d =
1, 2, 3, 4, 5, and 6. It should be noted that good
results of restoration are reached only at the first lev�
els, because clear artifacts (vertical or horizontal
lines) are not seen and the processing time is signifi�
cantly smaller than that of the proposed method
without pyramidal decomposition, which was
described in Section 1.1.

(a) (b) (c)

Fig. 4. (a) Original image, (b) inhomogeneous additive interference, and (c) observed image distorted by the inhomogeneous
additive interference and a white noise with a standard deviation of 2.
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3.2. Multiplicative Inhomogeneous Interferences

An example of multiplicative inhomogeneous
interferences is nonuniform illumination of the scene.

In this case, the observed image of the scene is formed
depending on the light source and the type of the sur�
face. In our experiments, we used a Lambert surface
(obeying the Lambert law of reflection of light), i.e.,
light is reflected from the surface uniformly in all
directions. The reflectance function [20, 21] can be
written as

(a) (b)

(c) (d)

Fig. 5. Results of restoration by the proposed method for an additive interference: (a) the image restored using three images,
(b) the enhanced difference between the original image and the image restored with the use of three images, (c) the image restored
using five images, and (d) the enhanced difference between the original image and the image restored with the use of five images.

35

30

25

20

15

10

5

9876420 31 5 10
Standard deviation of additive noise

 R
o

o
t�

m
ea

n
�s

qu
ar

e 
er

ro
r

Wiener filter Am3 Am5

Fig. 6. Results of restoration for an additive interference:
RMSE vs. the standard deviation of additive noise.
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Fig. 7. Results of restoration for an additive interference:
RMSE vs. the pyramid level.
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where τ is the slant angle, α is the tilt angle, and r is the
distance from the point source of light to the surface.
These parameters completely describe the position of
the point source of light relative to the origin of coor�
dinates, as shown in Fig. 9. In our experiments, τ = 5°,
α = 245°, and r = 0.3. The illuminance function in
the range [0.1, 1] is shown in Fig. 10a. Figures 10b
and 10c show the original and distorted images,
respectively. Additionally, the observed image contains
additive white noise with zero mean and an STD of 1.
Figures 11a and 11c show the images restored with the
use of three and five observed images, respectively.
Figures 11b and 11d show the enhanced differences
between the original image and the images restored with
the use of three and five observed images, respectively. As
was expected, the algorithm with five images provides
slightly better quality of restoration. Figure 12 shows the
results of image restoration in terms of the RMSE for
three observed images (Mm3), for five observed
images (Mm5), and for the Wiener filtering versus the
STD of the additive input noise. It should be noted
that the algorithm with five images restores the image
significantly better than the Wiener filter with known
parameters. The algorithm with three images is appli�

cable only in the cases of small STD of the additive
input noise.

Now let us present the results of operation of the
fast algorithm applied to this multiplicative model.
Table 2 presents the results of restoration by the pro�
posed fast algorithm from the viewpoint of the perfor�
mance time as a function of the level of the pyramid. 

The corresponding plots with restoration errors of
are presented in Fig. 13. In these experiments, the
STD of the noise is 1. The behavior of the algorithm is
similar to its behavior in the case of the additive model:
the algorithm becomes faster with an increase in the
level of the pyramid but the quality of restoration rap�
idly degrades. Figure 14 shows images restored by the
fast algorithm with three and five observed images for
the following levels of the pyramid: d = 1, 2, 3, 4, 5,
and 6. Note that good results of restoration are
reached only at first levels of the pyramid, because
clear artifacts (vertical and horizontal lines) are not
seen and the processing time is significantly smaller
than that of the method (without the pyramidal
decomposition) described in Section 1.2.

I p0 q0,( ) π
2
�� r

τ( )cos r τ( )tan α( )cos p0–( )
2

r τ( )tan α( )sin q0–( )
2

+[ ]
1/2

��������������������������������������������������������������������������������������������������������������������arctan–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,cos=

Table 1. Time of restoration of the entire image by the proposed fast algorithm vs. the pyramid level for additive interference

Pyramid 
level

Size 
of small images

Number 
of small images

Number of iterations per small image Time for restoration of the entire image, s

3 images 5 images 3 images 5 images

0 256 × 256 1 1084 1060 42.44 42.44

1 128 × 128 4 540 549 10.32 10.30

2 64 × 64 16 280 278 2.95 2.94

3 32 × 32 64 140 140 0.83 0.83

4 16 × 16 256 70 69 0.33 0.33

5 8 × 8 1024 34 32 0.18 0.18

6 4 × 4 4096 10 10 0.15 0.15

7 2 × 2 16384 3 3 0.15 0.15
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3.3. Robustness to the Errors in Positions 
of Sensor Elements

Finally, let us test the tolerance of the proposed
methods to small errors in the positions of the sensor
elements of the multi�element array during micros�
canning. Suppose that each sensor element introduces
a random positioning error during the input of the
observed images (due to a production defect or a posi�
tioning error occurring during the input of the image).

The positioning error of each element is an indepen�
dent random variable with a uniform distribution in
the interval [–0.5, 0.5]. Figures 15 and 16 show the
robustness on image restoration by means of the pro�
posed method with three observed images for the addi�
tive and multiplicative models, respectively. It should
be noted that the method is robust to inexact posi�
tioning of the array receiver in the process of micros�
canning.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Results of restoration for the additive model with the use of images for different levels of the pyramidal decomposition:
d = (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6.
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Light
source

z

x

y

r

α

τ

Fig. 9. Geometry of the illumination model.

(a) (b) (c)

Fig. 10. (a) Function of nonuniform illumination with τ = 5°, α = 245°, and r = 0.3: (b) the original image; (c) the image distorted
by nonuniform illumination and a white noise with a standard deviation of 1.

Table 2. Time of restoration of the entire image by the proposed fast algorithm vs. the pyramid level for a multiplicative
interference

Pyramid level Size of small 
images

Number of 
small images

Number of iterations per small 
image

Time for restoration of the entire 
image, s

3 images 5 images 3 images 5 images

0 256 × 256 1 1069 1060 42.98 42.93

1 128 × 128 4 540 538 10.31 10.30

2 64 × 64 16 274 271 2.95 2.94

3 32 × 32 64 140 137 0.83 0.83

4 16 × 16 256 69 68 0.34 0.34

5 8 × 8 1024 33 32 0.21 0.21

6 4 × 4 4096 10 10 0.17 0.17

7 2 × 2 16384 3 3 0.17 0.17
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(a) (b)

(c) (d)

Fig. 11. Results of restoration by the proposed method for a multiplicative interference: (a) the image restored using three images,
(b) the enhanced difference between the original image and the image restored with the use of three images, (c) the image restored
using five images, and (d) the enhanced difference between the original image and the image restored with the use of five images.
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Fig. 12. Results of restoration for a multiplicative interfer�
ence: RMSE vs. the standard deviation of the additive
noise.
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CONCLUSIONS

In this paper, we have proposed methods for resto�
ration of images distorted by additive and multiplica�
tive interferences. Using several observed images
obtained with the use of a multi�element microscan�
ning imaging system, we have derived an explicit sys�
tem of linear equations for the additive and multiplica�

tive models of distortion. The reconstructed image is a
result of solution of the system of linear equations.
Since the dimension of the system is very high, the
proposed method has a high computational complex�
ity. For solution of this problem, a fast algorithm based
on the pyramidal decomposition of images has been
proposed. By means of computer simulation, opera�
tion of the proposed methods has been demonstrated

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Results of restoration for the multiplicative model with the use of images for different levels of the pyramidal decompo�
sition: d = (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6.
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in terms of the accuracy of restoration, performance
time, and robustness to sensors’ positioning errors in
multi�element array sensors.
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Fig. 15. Results of restoration for an additive interference
with subpixel sensors’ positioning errors: RMSE vs. the
standard deviation of additive noise.
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Fig. 16. Results of restoration for a multiplicative interfer�
ence with subpixel sensors’ positioning errors: RMSE vs.
the standard deviation of additive noise.


