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Features of Interference of Kummer Beams 
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Abstract—An optical vortex interferometry model based on Kummer beams with an integer topological
charge is presented. The proposed approach makes it possible to improve the stage of extracting data on the
phase shift of the object beam introduced by an investigated object directly via detecting the angular positions
of local minima of the intensity of a field of superposition of Kummer and Gaussian beams with different
amplitude ratios.
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The use of light beams with a wave-front singularity
(optical vortex) in various measuring systems is an
active area in solving problems of optical metrology.
The geometry of the wave front of a scalar optical vor-
tex is a helicoid with a singularity on the axis in which
the phase is not defined, which undergoes a jump that
is multiple of  when bypassing the singularity along
a closed contour [1]. Such a wave structure exhibits a
certain stability during beam propagation and has a
characteristic intensity minimum in the vicinity of the
singularity, which is a kind of marker for the vortex
position and can be determined with high accuracy
[2]. In recent years, optical vortex beams have been
used to measure various physical quantities, including
the refractive index, thickness, relief height, and sur-
face roughness [3–5]. The approaches of the interfer-
ence analysis of vortex beams underlying the optical
topography ensure the nondestructive, fast, and accu-
rate control of optically smooth surfaces. This makes it
possible to use the advantages of singular beams, spe-
cifically, (i) the wave-front helicity, which gives a more
noticeable response to the optical path difference
changes, (ii) isolation of field zeros as a point probe
when scanning the test sample [6], and (iii) circular
symmetry, the change of which reflects the state of the
diffracted optical field upon detection of microscopic
phase inhomogeneities [7].

In practice, the interference analysis of a wave front
screw dislocation can be divided into two main
approaches: (i) the scenario of axial superposition with
a reference beam having a strongly pronounced spher-
ical wave front and (ii) the interference with an oblique
plane wave. Depending on the chosen scenario, the

interference pattern takes the form of a spiral or lines
of equal slope with a bifurcation area (“fork”). Com-
puter analysis of such interferograms allows one to
extract information about the phase delay of the object
beam introduced by an investigated specimen.

In this work, we propose an approach based on the
axial interference of a singular beam and a reference
beam with a smooth wave front. Such a superposition
mode eliminates the degeneracy of the axial zero in the
intensity distribution, which makes it possible to
extract the value of the difference of the optical-beam
path directly from its profile by tracking the change in
the angular position of local intensity zeros and to
determine the phase shift introduced in the object
beam.

The complex amplitude of the vortex beam field
can be described by the confluent Kummer hypergeo-
metric function, due to which such light fields are
called “Kummer beams” [8]. This family of functions
is an exact solution of the Helmholtz parabolic equa-
tion and the numerical simulation based on them cor-
responds qualitatively to experimental observations.
The Kummer beam axis contains a degenerate inten-
sity of zero, in the vicinity of which the phase has
incursion , where l is the vortex topological charge,
which takes integer values [9].

In the paraxial approximation, the complex ampli-
tude of the electric field of the vortex beam in the cross
section will be described by the equation  =

, where  are the cylin-
drical coordinates, t = 0, 1, …, l – 1,  is the optical-
path length in the propagation direction,  is
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Fig. 1. Transverse intensity distributions of the interference
field of Gaussian and Kummer beams with topological
charges of l = (a) 1, (b) 2, and (c) 3 as functions of the
amplitude ratio . The simulation parameters are
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the wavenumber, and  is the parameter normalizing
to unity the maximum complex amplitude

, the form of which in the far diffraction
zone can be written as [10]
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where  is the Rayleigh length,  is the ini-
tial beam waist radius,  is the γ function, and

 is the Kummer hypergeometric function.
The most widespread scenario is the interference of

a vortex beam and a Gaussian beam, the complex
amplitude of which can be expressed accurate to the
normalizing factor as

(2)

where  is the amplitude parameter,  =

,  is the Rayleigh
length,  is the Gaussian-beam waist radius in the
initial plane , and  is the optical path length.
The resulting distribution of the intensity of the field
of interfering waves  and  is
described by the well-known equation

(3)

where  is the complex conjugation sign.
Let us follow the changes in the intensity of the

interference field upon variation in the optical-path
difference controlled by the conditional delay line and
the ratio between the integral beam intensities. The
parameter of the optical path difference in free space
(the refractive index of a medium is the same for both
beams and can be taken as unity) takes into account
the difference between geometric paths of the beams;
this allows one to estimate the sensitivity of the inter-
ference pattern to their change.

The first analyzed parameter is the effect of the
field amplitude ratio on the interference pattern. In
the investigated case, upon variation in the ratio
between amplitudes of the vortex and Gaussian beams

, degeneracy of the axial singularity is
eliminated. As a result of the structural instability of a
higher-order vortex beam , l independent opti-
cal vortices appear in the field distribution, the topo-
logical charge of which is unity and has the same sign.
A similar evolution of the interference pattern was
demonstrated by Dennis for the Laguerre‒Gaussian
beams [11]. The shift of vortices and, consequently,
field zeros from the axis  is proportional to the
amplitude ratio of the Gaussian and Kummer beams:

. The type of splitting of the intensity
zeros takes the form of an equilateral l-gon with the
center on the vortex beam axis and intensity zeros in
the vertices (Figs. 1a–1c). The formed vortex struc-
ture is preserved during propagation in free space due
to the proportionality of the beam transverse dimen-
sions in the interferometer arms and curvatures of
their wavefronts up to the scaling transformations
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Fig. 2. Calculated patterns of the evolution of the transverse intensity distribution of the superposition of Gaussian and Kummer
beams with topological charges of l = (a) 1, (b) 2, and (c) 3 upon variation in geometric-path difference  between the beams.
The solid line shows a fragment of the trajectory of the vortex with the index ; the dashed line, of the vortex with the index

; and the dotted line, of the vortex with the index . The simulation parameters are , ,
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caused by the beam divergence. We note that the
Kummer beams retain self-similarity in the far diffrac-
tion zone; therefore, the difference between the inter-
ferometer arm lengths did not exceed the Rayleigh
length and the simulation parameters were close to
experimentally implementable. This opens up the
TECHNICAL PHYSICS LETTERS  Vol. 48  No. 3  202
opportunity for the obtained optical structure to be
used as a probe beam with experimentally detected
positions of the isolated field zeros.

The second dependence, which determines the
resolution of this approach in metrological problems,
can be obtained using the characteristics of the field
2
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spatial dynamics at different delay line lengths
 (Figs. 2a–2c). For the three presented

absolute values of the topological charge, each of the
field local zeros moves along a spiral trajectory during
the growth of the delay line length. This trajectory type
is determined by a fundamental property of the Kum-
mer beam: a helicoidal wave front [6]. The presented
superposition of the intensity of the resulting field and
its phase portrait (Fig. 2a) is indicative of the exact
correspondence between the phase singularity posi-
tion and the amplitude zero. We note that all the
resulting fields are invariant under rotation by the
angle , as a result of which the angular coordinate
of the trajectory of each intensity zero is described as

 where  corresponds to the
number of the intensity zero and takes the values t = 0,
1, …, l – 1. The superposition with the Kummer beam
with a unit topological charge will have the highest
resolution. The change in the delay line from 0 to
causes two complete rotations of the intensity zero in
the field cross section. At the detection of a change in
angle  accurate to 0.035 rad, the resolution will be
~λ/180. Nevertheless, in practice, the second refer-
ence point can increase the accuracy of determining
the rotation angle, which does not exclude the use of
the Kummer beam with a double topological charge.

The advantage of the proposed approach lies in the
possibility of real-time automatic express processing
of the beam superposition field. Tracking the positions
of zero intensity using neural networks and machine
learning [2] without image preprocessing will signifi-
cantly speed up the extraction of data on the path dif-
ference. It is promising to move from matrix screening
of the entire beam field to single-pixel detectors, the
signal of which can be transmitted faster and with
a larger capacity.
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