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Abstract—The fluctuation analysis method is modernized with allowance for the statistics of local standard
deviations of the signal profile from the piecewise linear approximation of the trend. It is shown that the pro-
posed approach allows one to reduce the method’s sensitivity to individual artifacts and to increase the sta-
bility of the algorithm for calculating the scaling exponent, which favors a wider use of modernized fluctua-
tion analysis for solving problems of complex process diagnostics in the dynamics of systems with time-vary-

ing characteristics.
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Fluctuation analysis, which includes the procedure
of approximation and removal of low-frequency
dynamics or trend (detrended fluctuation analysis,
DFA) [1, 2], is a useful alternative to classical correla-
tion analysis. It provides a more reliable estimation of
long-range correlation characteristics than does the
autocorrelation function, especially in the presence of
noises and under nonstationary conditions. For sta-
tionary random processes, there exists an interrelation
between the scaling exponent of the DFA method and
characteristics describing the decrease of the autocor-
relation function or the frequency dependence of the
spectral power density function [1]; in spite of this
fact, the presence of a more universal approach appli-
cable both to stationary and nonstationary processes
gave occasion to a wider use of the DFA method in
investigations of the complex systems dynamics by
experimental data [3—10]. Like any other method of
digital signal processing, DFA has limitations, which
have been discussed, e.g., in [11—14]. In [15], it was
shown that different types of nonstationarity (trend,
intermittent behavior, and variation of energy charac-
teristics in time) had an effect on results of the DFA
method and could lead to wrong interpretation of
them. For this reason, reducing the signal to stationar-
ity at the stage of preliminary processing (if possible)
is a necessary procedure.

Under conditions of strong variation in character-
istics of the system dynamics in time, e.g., during tran-
sition processes when properties of the signal under
study are significantly different at different intervals,
we proposed to use a modified DFA method [16],
which includes calculation of an additional scaling

exponent characterizing nonstationarity effects. This
modified approach takes into account differences
between local root-mean-square deviations of the sig-
nal profile from the piecewise linear approximation of
the trend. In this work, further modification of the
method is proposed to provide more stable results of
the analysis.

The algorithm of the DFA method [2] includes the
transition from the signal x(i), i = 1, ..., N, to its profile
within the framework of the generalized model of one-
dimensional random walks

N

(x) = Zx(i)a (1)

i=1

k
Y(k) = [x() — ()],
i=l

k=1,...,N,

segmentation of the profile Y(k) into nonoverlapping
intervals with a length », and linear approximation of
the trend Y, (k) in each interval. The standard devia-
tion of profile fluctuations relative to the trend

N
F(n) = \/ika) - Y, (07, )
Ni=
is then calculated, and similar calculations are carried
out in a wide range of n for analyzing the power-law
behavior of dependence F(n) and estimating the scal-
ing exponent o

F(n) ~ n®. 3)

Such behavior is typical for many random pro-
cesses, although the value of a can be different in dif-
ferent ranges of scales.
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Fig. 1. Dependences (3), (5), and (6) presented in the dou-
ble logarithmic scale for test signals: (a) anticorrelated ran-
dom process (derivative of the 1/f noise), (b) white noise,
and (c) periodic switchover between these processes.

If the characteristics of nonstationary behavior
strongly vary in time (for example, for transition pro-
cesses or intermittence regimes), these changes have
an effect on dependence (3). For this case, it was pro-
posed in [16] to take into account local standard devi-
ations of the profile from linear approximation F, ().
They are calculated individually for each segment.
Nonstationarity effects can be characterized using the
measure

dF(n) = max[Fe(n)] - min[F.(n)], C))

which takes small values for a homogeneous process
and increases if nonstationarity properties change
depending on the initial data segment.
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Measure (4) is characterized by an increase with an
increase in #; however, the power behavior of dF(n) is
described by scaling exponent [3:

dF(n) ~ n°, (5)

which is different from o in the general case. This ver-
sion of the DFA modification demonstrated the pos-
sibility of improving the diagnostics of structural
changes in signals as compared to the standard algo-
rithm in the analysis of physiological processes [17].
However, it has a substantial defect: there appears the
sensitivity to individual artifacts having an effect on
quantity max|[F,,.(n)] and, therefore, on the scaling
exponent. To avoid this and to increase the algorithm
stability, it is expedient to use statistical characteris-
tics, e.g., to calculate the root-mean-square deviation
of local values of F .(n), i.e., to analyze the depen-
dence

O(Foo(n)) ~ . (6)

With allowance for differences in definitions, expo-
nent B can be different when using formulas (5) and
(6). In this case, we choose only one calculation vari-
ant that provides more stable results. In accordance
with data of Fig. 1 for a random process with anticor-
relations (o0 = 0.04, Fig. 1a), the insignificant growth
of logF(n) with an increase in the segment size is
accompanied by a decrease in values of logdF and logc
(Foo), i-€., by negative scaling exponent . The spread
of values relative to the approximating straight line is
less when dependence (6) is considered instead of (5).
For white noise (o0 = 0.5, Fig. 1b) and the regime
of intermittence between these random processes
(Fig. 1c), approximate correspondence between the
scaling exponents o and J is observed; for more stable
calculations, however, it is also better to use 6(F..(n))
instead of dF(n).

Figure 1 presents examples of analyzing signals
whose scaling exponents are preserved with a change
in the scale. As an example of an inhomogeneous pro-
cess that demonstrates different scaling exponents for
short- and long-range correlations, a 4-h electroen-
cephalogram signal of a rat was considered. The signal
included intervals of wakefulness and synchronized
sleep. Figure 2 presents dependences described by for-
mulas (3), (5), and (6) in the double logarithmic scale.
Within the range 2.5 < logn < 3.5, the plot slopes are
rather close; however, for long-range correlations
(logn > 4.0), the behavior becomes essentially differ-
ent and a positive o, is in correspondence with negative
exponent . Using root-mean-square deviations of
values of F.(n) instead of the difference of extreme
values (4) provides a decrease in the spread of the cal-
culated values in all ranges of scales. The obtained
results comfirm independence of the scaling expo-
nents of the modified DFA method [16]. In addition,
they testify that the further method modernization
proposed in this work and using the statistics of local
No. 6
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Fig. 2. Dependences (3), (5), and (6) presented in the dou-
ble logarithmic scale for an electroencephalogram signal of
a rat (the sampling frequency is 2 kHz).

standard deviations of the signal profile from the lin-
ear approximation of the trend allows one to provide
more stable calculation results achieved due to the
decrease in the spread of values of logG(F,,.) as com-
pared to logdF in the analysis of power regularities
described by formulas (5) and (6). It is appropriate to
take into account this fact when using the modified
DFA method for solving problems of complex process
diagnostics in the dynamics of systems with time-vary-
ing characteristics.
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