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Abstract—The problem of diagnostics of structural variations in nonstationary processes is considered in the
case of a degree of nonstationarity that is dependent on the frequency range. Multiscale analysis of experi-
mental data on rhythmic processes with time-varying characteristics is carried out by the example of sleep
slow wave dynamics. Possibility of improving the quality of diagnostics by selecting proper wavelet basis set
functions is discussed.
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In many system dynamics, nonstationarity is asso-
ciated with low-frequency trends that can be elimi-
nated by means of high-frequency filtration making
possible the application of the classical methods of
digital signal processing [1]. However, more compli-
cated situations can be encountered in which the non-
stationarity is related to, besides variations of the local
average level, variations of the characteristics of rhyth-
mic processes in a certain frequency range [2–6]. In
studying this range, it is necessary either to use meth-
ods of the analysis of systems with time-varying
parameters or estimate the characteristics of system
functioning over a small amount of data and assume
that the system dynamics is quasi-stationary within
sufficiently short time intervals. A widely used tool for
solving these problems is offered by wavelet analysis
[7].

For digital processing of large amouns of experi-
mental data, it is expedient to use fast algorithms of
multiscale analysis involving the expansion over
orthonormalized basis set functions, e.g., wavelets of
the Daubechies family [7]. A correct choice of the
basis set can be important for making effective solu-
tion of many practical tasks possible [8–12], but the
large variety of wavelet functions makes this choice
rather subjective.

The present work considers the problem of diag-
nostics of structural variations in nonstationary pro-
cess in cases in which the degree of nonstationarity
depends on the frequency range. Multiscale analysis of
experimental data carried out by example of sleep slow
wave dynamics will show how the quality of diagnos-
tics can be improved by selecting proper wavelet basis
set functions.

Multiscale analysis involves the procedure of pyra-
midal signal expansion with the aid of a set of mirror
filters formed by dilations and translations, respec-
tively, of scaling function φ(t) and wavelet ψ(t) defined
as

(1)

The expansion is carried out using basis set func-
tions selected from Daubechies wavelet family [7].
The analyzed signal on given resolution level m is pre-
sented in the following form:

(2)

where sm, k and dj, k are the approximation and detal-
ization coefficients, respectively. With allowance for
compactness of the Daubechies wavelet carrier, vari-
able t takes values within limits of the wavelet function,
the domain of which is scale-dependent. Variability of
the detalization coefficients on various scales  j is char-
acterized by the signal dispersion defined as

(3)

which is used for diagnostics of the structural variation
of signals [13]. Here, M is the number of detalization
coefficients on scale j, which determines the interval
of index k variation, and angle brackets denote averag-
ing over all detalization coefficients on the given scale.

Let us consider an example of the task of diagnostic
of structural variations in the signal of electric activity
of the brain during sleep. The corresponding signal
changes are related to the dynamics of sleep slow waves
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Fig. 1. Plots of the dispersion of detalization coefficients
vs. scale j at (1) slow- and (2) fast-wave sleep stages as

determined for  wavelet with averaging over 2-min-long
EEG segments. The inset presents the plots of disper-
sion σ vs. segment number k, showing a nonstationary
character of signals on scales  j = 7 and 8.
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Fig. 2. Deviation E from the averaged value of σ(j) normal-
ized in the interval from 0 to 1 and averaged over expansion
levels j. The inset shows plots of dispersion σ(8) for  j =
8 vs. number k of a 1-min-long EEG segment, showing
different behavior at (1) slow- and (2) fast-wave sleep
stages.
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(0.5–4 Hz), which has drawn much interest of
researchers in recent years [14, 15]. It is known that
the electric activity of the human brain electric exhib-
its a clear sequence of alternating sleep stages over-
night, which depends on the age and is affected by
pathologies [16, 17]. However, despite the existence of
these variations, they are still insufficiently studied.

In the present study, we have analyzed temporal
variations of the characteristics of electroencephalo-
grams (EEGs) measured in a group of seven healthy
volunteers at various stages of sleep. At a signal dis-
cretization frequency of 250 Hz, scales j correspond-
ing to slow-wave sleep fall in the interval from 6 to 9,
in which maximum differences between slow-wave
and fast-wave sleep stages are observed (Fig. 1,
curves 1, 2, respectively). However, there is a pecu-
liarity: variation of the slow-wave characteristics
within one stage of sleep (see curves for j = 7 and 8 in
the inset to Fig. 1) is accompanied by approximately
constant values of the dispersion of wavelet coeffi-
cients for rhythms of higher frequencies (cf. curve 5 in
the same inset). This phenomenon is of interest for
diagnostics of structural variations in nonstationary
processes, since the temporal variation of dispersion at
the fast- and slow-wave sleep stages is different (see
the inset to Fig. 2). It can also be suggested that the
character of corresponding dependences will also be
different between norm and pathology.

A correct choice of the wavelet basis set functions is
important for practical application of the proposed
approach. Although different wavelets of the
Daubechies family lead to qualitatively similar results,
the optimum basis set will reduce the spread of char-
acteristics calculated from fragments of experimental
data, thus increasing the reliability of the signal expan-
TEC
sion. In calculations, we selected different domains of
wavelet definition, including Daubechies functions
with extremal phases (indicated by subscript “e” in
Fig. 2) and least asymmetric wavelets (subscript “s”).
We then carried out a search for a wavelet ensuring a
minimum spread of estimated characteristics (3) in
comparison to values obtained upon averaging the
results of calculations using selected basis sets. With
allowance for a change in detalization coefficients,
these estimations were performed as follows: modu-
lus-averaged deviation E from the averaged value of
σ(j) was normalized in the interval from 0 to 1 and
then averaged over expansion levels j.

Results are presented in Fig. 2 in the order of
decreasing E value. As can be seen from Fig. 2, the
maximum spread takes place for the D4 wavelet having
the minimum domain of definition. However, an
increase in the domain of wavelet definition (and,
hence, in smoothness of the wavelet function) did not
always improve the situation. High E values were more
frequently observed for asymmetric wavelet functions
( , ), whereas a decrease in the spread of esti-
mated characteristics (3) as compared to that obtained
on the averaging over selected basis set functions took
place in case of the choice of the least asymmetric
wavelets ( , ). The latter wavelets seem to be most
appropriate for the problem under consideration,
judging from the results of comparative analysis of the
data obtained for all volunteers. By analogy with the
sleep slow waves used for in the above illustrative
example, an analysis of processes with nonstationary
dynamics in a certain range of frequencies can be per-
formed for various technical systems.
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