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Abstract—The capability of digital hologram reconstruction algorithms applied for the processing of holo-
graphic interferograms in finite-width fringes being recorded and reconstructed by the classical optical
method is validated. Application of these algorithms, significantly simplifies the processing procedure.
Results of the processing of the holographic interferogram of a bulk strain soliton performed by the two meth-

ods are demonstrated to be in a good agreement.
DOI: 10.1134/S1063785015070184

The rapid development of digital data recording
technologies has led to wide use of digital holography
techniques [1, 2]. However, these techniques still have
some limitations, which are related primarily to insuf-
ficient spatial resolution and recording speed of pres-
ently available digital cameras. While the problem of
restricted resolution can be readily solved by using a
standard commercial scanner in the recording system
[3], the high frame rate required for studies ofg fast
processes leads to the need for special high-speed
cameras [4, 5]. Alternatively, it is possible to use meth-
ods of classical holographic interferometry that
employ recording on photographic materials followed
by optical data reconstruction.

The method of classical double exposure holo-
graphic interferometry is based on the sequential
recording of two holograms of an object in two states at
the same place on a high-resolution recording
medium. In the method of finite-width fringes, the
angle between the object and reference beams is
slightly varied, e.g., by rotating a wedge in the object
beam. At the stage of reconstruction, this leads to the
appearance of carrier fringes, which deviations from
straight lines are related to a phase difference caused
by the object disturbance, whereby the shift by the car-
rier fringe width (AK = 1) corresponds to a phase vari-
ation of 2m.

Imperfections of the optical system and distur-
bances introduced by the object under study fre-
quently lead to the appearance of various defects on
the interferogram, primarily in the form of carrier
fringe discontinuities. The presence of such defects
significantly complicates implementation of the auto-
matic tracing of a carrier fringe and the measurement

of its deviation using well-known processing algo-
rithms.

The present work was aimed at developing a reli-
able and relatively simple method for the automatic
processing of classical holographic interferograms. It
is demonstrated below that this task can be solved
using existing algorithms that are well developed for
reconstructing off-axis digital holograms.

As is known, a holographic interferogram in finite-
width fringes represents a result of the interference of
two object waves with phase components ¢, and @, at
a certain angle that adds flat inclined phase y to one of
the object waves. The difference of phase distributions
€ = @, — @, corresponds to changes appearing in the
object between the two exposures. The interference of
two object waves, Aexp(ip;) and Bexp(i(p, + Y)), is
described by the following equation:

1= |Aexp(ig,) + Bexp(i(@, +7))|’

— A+ B+ 2ABcos(@,— (@, +7)),

where cos(p, — (¢, + v)) is the interference term.
However, the same interference pattern can alterna-
tively be interpreted by considering it as a hologram
obtained as a result of the interaction of an object
wave, having the phase ¢ of disturbance of the object
under study, and a plane reference wave with the phase
Yo at angle O between the two waves. In this case, the
interference term is also described by the expression
cos(& — Yo) =cos(Q; — P, — ¥p)-

This assumption was verified by numerically simu-
lating the pattern of interference at angle 6 for two
object waves corresponding to the presence (Fig. 1a)
and absence (Fig. 1b) of disturbance and comparing it
to the digital hologram obtained with the object wave
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Fig. 1. Results of simulation of the formation of the holographic interferogram (a—c) and of the off-axis digital holograms (c—e).

bearing information on the object disturbance
(Fig. 1d) and the reference wave inclined by angle 6
(Fig. 1e). As can be seen, these approaches lead to the
same distribution of intensity (Fig. 1c)

Then, by applying the known algorithm of recon-
struction of the off-axis digital hologram to the

obtained interferogram and assuming the angle
between object and reference waves to be 0, one can
readily obtain the array of phase retardation values
caused by changes in the object under study. This angle
can be either measured in experiment or calculated
based on the parameters of interference fringes in the
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Fig. 2. (a) Holographic interferogram of a bulk strain soliton in homogeneous PS waveguide (2) in surrounding air (/) (the shape
of one interference fringe with shift AKis shown below the interferogram) and (b) result of interferogram processing by the digital

hologram reconstruction algorithm [7].
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undisturbed region [6]. Thus, the difference between
classical holographic interferometry and the off-axis
digital holography reduces essentially to regrouping
phase components in the interference term. This is
equivalent to interchanging the notation of reference
and object waves.

A number of algorithms are developed by now
aimed for reconstruction of off-axis digital holograms.
However, in view of the rather large number of carrier
fringe discontinuities in the case under consideration
(for example, see the inset in Fig. 2a), it is effective to
employ an algorithm that is stable to such defects.
From this standpoint, significant advantages are
offered by the local least-squares algorithm of phase
reconstruction proposed by Liebling et al. [7]. This
algorithm is based on the assumption that amplitudes
of the object and reference waves as well as the object
wave phase vary much more slowly than the phase of a
plane reference wave and the recorded intensity do.
This assumption is valid in the overwhelming number
of cases because the reference wave is incident onto
the recording medium at a certain angle rather than
perpendicularly and its phase front can be readily
modeled using a priori information about the angle 0.
Then, each pixel is considered being surrounded by a
small square region of N x N pixels, in which slowly
varying parameters are assumed to be constant, and a
system of M = N? overdetermined equations is con-
structed with three unknowns: amplitudes of the
object and reference waves and the object wave phase.
Finally, the unknown values are determined by solving
the obtained system of equations. The assumption of a
slowly varying phase of the object wave provides a
rather smooth distribution of phase shift even in the
presence of a large number of small discontinuities of
carrier fringes. The degree of smoothing is determined
by the size of the local region in which the system of
overdetermined equations is constructed [8].

The above algorithm has been applied to the pro-
cessing of holographic interferograms of a bulk strain
soliton in a homogeneous polystyrene (PS) waveguide.
The initial interferogram is presented in Fig. 2a. In the
classical case, such holographic interferograms are
processed by measuring interference fringe shifts. In
the example provided, we used the algorithm of [7]
and obtained an array of phase retardations (Fig. 2b).
As can be seen, the shape of the curve circumscribing
the phase variation array matches at of the carrier
fringe on the interferogram recorded by the method of
double exposure holographic interferometry, while the
processed image (Fig. 2b) does not exhibit discontinu-
ities or other singularities present on the interfero-
gram.

The amplitude of the observed bulk strain soliton
can be calculated from the carrier fringe shifts by the
following formula [9]:
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Fig. 3. The shape of a bulk strain soliton in homogeneous
PS waveguide as obtained by processing of the holographic
interferogram (presented in Fig. 2a) using (/) the classical
method (curve constructed using seven points and
smoothed by B spline) and (2) the digital hologram recon-
struction algorithm [7]. Dashed lines show the soliton
width (L) and full width at half maximum (Lgwpm)-

where AK is the carrier fringe shift on the interfero-
gram, A is the recording radiation wavelength
(0.694 um), n, is the refractive index of waveguide
material (n, = 1.54 for PS), 4 is the waveguide thick-
ness (10 mm) in the direction of probing radiation,
and v is the Poisson’s ratio (v = 0.34 for PS). Taking
into account that AK = ¢/2n (where ¢ is the phase),
we eventually obtain the following formula:

A= P2 . 3)
2nh(n, —1)(1-v)

The results of processing of the interferogram pre-

sented in Fig. 2a gave maximum soliton amplitude

Apax = 1.82 x 1074, soliton width L = 33.0 mm, and full

width at half maximum Lgygy = 17.8 mm.

Figure 3 shows the shape of the bulk longitudinal
strain soliton in the homogeneous PS waveguide as
obtained by processing of the holographic interfero-
gram (Fig. 2a) using the classical method (curve con-
structed by discrete seven points and smoothed by
spline) and the proposed algorithm applying the local
least-squares wave retrieval procedure [7]. The dis-
crepancy in soliton width L can be explained by a
rather large error of determination of the fringe shift by
the classical method for solitary waves with low-sloped
fronts.

Thus, it has been demonstrated that the existing
algorithms of digital hologram reconstruction can be
applied to processing of holographic interferograms

A = A—K;‘, (2) recorded and reconstructed by the classical optical
h(n,—1)(1-v) method.
TECHNICAL PHYSICS LETTERS Vol. 41 No.7 2015
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