
ISSN 1063-7842, Technical Physics, 2021, Vol. 66, No. 6, pp. 741–748. © Pleiades Publishing, Ltd., 2021.
ISSN 1063-7842, Technical Physics, 2021. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2021, published in Zhurnal Tekhnicheskoi Fiziki, 2021, Vol. 91, No. 5, pp. 764–771.
Supersonic Laminar Flow Past a Blunt Fin:
Duality of the Numerical Solution

E. V. Kolesnika,* and E. M. Smirnova

aPeter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia
*e-mail: kolesnik_ev@mail.ru

Received December 10, 2020; revised December 11, 2020; accepted December 11, 2020

Abstract—The results of a numerical solution of the problem of supersonic f low past a blunt fin mounted on
a plate with a developing boundary layer are presented. Generally, the case considered corresponds to the
flow configuration used in the experimental and computational study by Tutty et al. (2013), in which the lam-
inar air flow with the freestream Mach number of 6.7 is considered. The simulation was performed for different
values of Reynolds number ranging from 5.0 × 103 to 2.0 × 104. Two stable solutions corresponding to meta-
stable f low states with different configurations of the vortex structure were predicted within some range of
Reynolds number. The bifurcation diagrams showing the main horseshoe vortex center location and the
length of separation region versus the Reynolds number is presented, critical Reynolds number corresponding
to occurrence of the second isolated solution is evaluated.
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INTRODUCTION
A supersonic f low past an obstacle mounted on a

streamlined surface results in a highly three-dimen-
sional f low pattern, which includes an elongated f low
separation region containing a set of horseshoe-
shaped vortices and a complex shock-wave interaction
[1–15]. The effects of the viscous–inviscid interaction
are characterized by a strongly nonuniform distribu-
tion of the heat f lux on the streamlined surface, the
values of which can exceed by several times that values
in the undisturbed boundary layer [4–7, 9, 13, 14].
The study of the f low structure of a similar configura-
tion and the correct prediction of characteristics of
heat transfer is important both for practical purposes,
in particular, in the aerospace industry [16], and in
fundamental and theoretical respects.

In the interaction of the boundary layer with the
obstacle in the form of a blunt–fin body, the f low
structure and pattern of local heat transfer depend on
many parameters, such as the properties of a gas, char-
acteristics of an incoming boundary layer, and the
geometry of the considered configuration. Recently,
the interest in this topic has again increased with a
pronounced bias toward the use of computational
fluid dynamics methods [4–8, 13, 14], which make it
possible to study the f low structure for a wide range of
parameters. Studies are performed for both laminar
flow regimes [3–7, 12–15] and turbulent and transient
regimes [8–11].

In this work, we present results of numerical simu-
lation of supersonic laminar f low past a blunt fin

mounted on a plate along which the boundary layer
evolves. The formulation of the problem is based on
the data of the calculation and experimental work [4],
the authors of which studied the structure of the lam-
inar f low in the front of a streamlined body at
freestream Mach number M = 6.7 for three values of
the Reynolds number based on the blunt diameter:
ReD = 1.25 × 104, 2.50 × 104, and 3.75 × 104. The
numerical solutions obtained in the cited work were
interpreted by the authors as stationary and unique.
Later, in a computational study [5], it was shown that,
even at ReD = 2.50 × 104, the solution is unsteady.

Recently, we showed that [15], for the lowest of the
aforementioned Reynolds numbers, ReD = 1.25 × 104,
there are two stable stationary solutions with different
configurations of vortices in the f low separation
region. In fact, this can be considered as another case
of the well-known feature of possible nonuniqueness
of the supersonic f low past a body, system of bodies,
or their separate parts (see, e.g., [17–21]). The physi-
cal aspect of this problem consists in strong nonlinear-
ity of gas–dynamic processes. Under conditions of pos-
sible nonuniqueness, the realized flow pattern is deter-
mined not only by the geometric and physical
parameters, but also by the prehistory of the flow for-
mation; in other words, aerodynamic hysteresis occurs.

In this work, continuing the studies started in [15],
we present the calculation results obtained for the
Reynolds numbers varying in the range from 5.0 × 103

to 2.0 × 104. We study the duality of the solution by
exceeding the Reynolds number of some critical value.
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Fig. 1. Computational domain.
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1. FORMULATION OF THE PROBLEM
Figure 1 shows the computational domain of the

considered problem of viscous perfect gas f low past a
blunt fin mounted on a plate. The f low is assumed as
symmetrical with respect to plane XZ; hence, the cal-
culations are performed for half of the considered con-
figuration.

The simulated f low is determined by the following
set of dimensionless parameters: free-stream Mach
number M, Reynolds number ReD, Prandtl number
Pr, temperature factor Tw/T∞, relative plate length
L/D, and adiabatic exponent γ. The f low was calcu-
lated for the following fixed parameters corresponding
to the data from [4]: M = 6.7, Tw/Tin = 4.75, Pr = 0.7,
γ = 1.4, and L = 145 mm as the length of the plate to
the junction. The calculations were performed at
Reynolds numbers ReD in the range from 5.0 × 103 to
2.0 × 104, with the Reynolds number being varied by
changing blunt fin diameter D from 1 to 4 mm.

At the inlet boundary of the computational
domain, a uniform flow is specified; the no-slip con-
ditions are specified at the surface of the body and at
the plate. The surfaces of the body and plate are main-
tained at constant temperature Tw. At the lateral and
upper boundaries, the nonreflecting boundary condi-
tions are specified, while the zero gradient condition
for the calculated variables is specified at the outlet.

2. COMPUTATIONAL ASPECTS
In our calculations, we used the SINF/Flag-S

finite-volume unstructured code developed at the
Institute of Applied Mathematics and Mechanics of
Peter the Great St. Petersburg Polytechnic University.
We solved the complete 3D Navier–Stokes equations
for a thermally and calorically perfect gas. The tem-
perature dependence of viscosity was determined by
the Sutherland formula.

To calculate the convective f luxes at the faces of
control volumes, we used the AUSM scheme [22] of
the second order of accuracy. The reconstruction of
variables at the faces of control volumes of the
unstructured grid was performed using the technique
described in [23, 24]. To preserve the solution mono-
tonicity, we used the TVD scheme [25]. A more
detailed description of the numerical method is pre-
sented in [12].

We used a grid consisting of 10 million cells: as was
shown in [15], such grid resolution is sufficient to
resolve the key features of the f low. All calculations
were performed for the nonstationary formulation.
For time integration, we used the dual-step method
with the three-layer approximation of the time deriva-
tive (“backward difference”) of the second order of
accuracy. The dimensionless time step was given equal
to ΔtU∞/L = 3.67 × 10–4, which ensures the Courant
number of the order of unity in the most part of the
computational domain.

3. CALCULATION RESULTS
AND DISCUSSION

3.1. Duality of Solution at ReD = 1.25 × 104

It was shown in [15] that, for the considered con-
figuration at ReD = 1.25 × 104 (D = 2.5 mm), there are
two stable stationary solutions with different configu-
rations of the vortex structure in the f low separation
region.

The f low structure corresponding to one of the
solutions previously obtained in [4, 15] and specified
below as Solution I is shown in Fig. 2, where stream-
lines and the distribution of the relative heat f lux on
the surface of the body and plate are shown (qw0 is the
value of the heat f lux in the undisturbed boundary
layer on the f lat plate at x = L). The main features of
the considered f low are clearly seen, which consist in
the formation of a f low separation region with a set of
horseshoe-shaped vortices, influence of this region on
the shock-wave pattern, along with the presence of the
region of increased heat transfer.

The duality of the solution for the considered
Reynolds number is demonstrated in Fig. 3, where the
flow structure in the symmetry plane for two different
solutions (Solution I and Solution II) is shown. The
solutions differ in the normalized length of the f low
separation region (LS/D) along with the location of the
axis of the main horseshoe-shaped vortex ( /D). In
the first case, LS/D = 6.50, /D ≈ 1.8, and for the
second solution LS/D = 6.01, /D ≈ 1.0. Figure 4
shows considerably different distributions of the non-
dimensional heat f lux, which were calculated for two
solutions, as well as the surface streamlines.

As was mentioned above, only one numerical solu-
tion (Solution I) and corresponding experimental data
were presented in [4]. A comparison of the results of
this work with that presented in [4] is shown in Fig. 5.

Figure 5a shows the distributions of the non-
dimensional heat f lux along the symmetry line on the
plate (qwp are corresponding values of heat f lux in the
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Fig. 2. Illustration of the three-dimensional f low struc-
ture, ReD = 1.25 × 104.
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Fig. 3. Flow structure in the symmetry plane at ReD =
1.25 × 104: (a) Solution I and (b) Solution II.
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undisturbed boundary layer). Clearly, the obtained
solution with one global maximum and two local max-
ima is in good agreement with the data presented in
[4]. Figure 5b shows the calculated f low structure in
the symmetry plane; a good accordance of the results
is also clearly seen.

3.2. Results of Parametric Calculations
For a more detailed study of duality of the numeri-

cal solution, for the considered problem, we per-
formed calculations with “parameter continuation.”
Actually, diameter D of the blunt fin was varied while
the plate length and parameters of the free stream
remained fixed. It should be noted that, in this case,
the values of two key parameters of the problem—
Reynolds number ReD and relative plate length L/D—
were being changed; consequently, relative thickness
δ/D of the free-stream boundary layer is also changed.

By performing calculations at each given diameter
value, the calculated f low fields corresponding to the
first and second solutions for the nearest diameter
value were used as the initial fields. Calculations were
performed starting from the value D = 2.5 mm (ReD =
1.25 × 104) for the gradually decreasing and increasing
fin diameter value.

In the case of D = 1.8 mm (ReD = 9.0 × 103),
regardless of the initial field, the numerical solution is
unique and stationary (Solution I). The second sta-
tionary solution occurs by exceedance of some critical
Reynolds number value ReD, cr. With a further increase
in Reynolds number, the f low becomes unsteady. The
Reynolds number values corresponding to the transi-
tion to the nonstationary f low regime are different for
two solutions.

Figure 6 shows the Mach number fields in the sym-
metry plane for several cases (in the case of unsteady
flow regimes, the time-averaged characteristics are
presented). It is seen that the typical f low pattern
inherent for the first and second solution persists with
the increase in blunt fin diameter. In the first solution,
TECHNICAL PHYSICS  Vol. 66  No. 6  2021
the f low separation region is more extended and is
more “pressed” to the plate; the main horseshoe-
shaped vortex is elongated along the plate, and its cen-
ter is located farther from the leading edge of the body,
and an additional vortex occurs in the vicinity of the
fin body. In the second solution, the f low separation
region is shorter and the center of the main horseshoe-
shaped vortex is located closer to the fin body.

The summary Table 1 contains the values of repre-
sentative characteristics of the f low, which are the
location of the center of the main horseshoe-shaped
vortex ( /D) and the length of the f low separation
region (LS/D) calculated as a function of the varying
diameter of the fin body. Here also, for informational
purposes, Reynolds number ReD, relative plate length
L/D, and relative thickness δ/D of the free-stream
boundary layer are presented.

Figure 7 shows the bifurcation diagrams obtained
using the results of the parametric calculations, which
show the dependence of the coordinate of the main
horseshoe-shaped vortex center and dependence of
the f low separation region length on the fin diameter
(the Reynolds number). The obtained diagrams make
it possible to conclude that critical diameter value Dcr
lies between 1.8 and 1.85 mm. It is also clear that, with
the increase in ReD, the first solution changes evolu-
tionarily, but the second solution looks as an isolated
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Fig. 4. Stanton number distributions and the surface
streamlines at the plate at ReD = 1.25 × 104: (a) Solution I
and (b) Solution II.
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solution existing at ReD > ReD, cr ≈ 9.25 × 103; in this
case, point P is the bifurcation (transition) point iso-
lated from the branch of Solution I.

For the first solution, the length of the f low separa-
tion region, first, monotonically grows with the
increase in the Reynolds number and, next, beginning
from ReD ≈ 1.5 × 104, gradually decreases. For the sec-
ond solution, the dependence is opposite: a decrease
in the length of the f low separation region is observed
up to Reynolds number ReD ≈ 1.70 × 104, from which
the length increases. The changes in the pattern of the
dependencies are determined by the transition to non-
stationary f low regimes.

It should be emphasized once again that the pre-
sented bifurcation diagrams were obtained at the fixed
location of the fin body with respect to the front edge
of the plate (L = 145 mm). Therefore, relative thick-
ness δ/D of the free-stream boundary layer, which is
the key parameter of the problem, is changed by vari-
ation of D. Technically, the dependence of the critical
Reynolds number on δ/D can be determined using
similar calculations by variation of plate length L
(which is a separate, extremely resource consuming
problem).

3.3. Heat Transfer Characteristics
The pattern of local heat transfer on the plate sur-

face is mainly determined by the configuration of vor-
tices in the f low separation region, and this pattern can
be considerably different for two branches of the solu-
tion. Figure 8 shows the distributions of the heat f lux
along the symmetry line for all cases considered.
These distributions are presented as 3D diagrams,
where the varying diameter is plotted over the third
TECHNICAL PHYSICS  Vol. 66  No. 6  2021
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Fig. 6. The Mach number fields and streamlines in the symmetry plane for various diameters D (the dash-dotted curve indicates
the sonic line): (a) Solution I and (b) Solution II.
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direction. Clearly, in the case of a small diameter, the
solution exhibits only one local maximum of the heat
flux; the increase in diameter results in the vortex
structure in the front of the fin body becoming com-
TECHNICAL PHYSICS  Vol. 66  No. 6  2021
plicated and, consequently, the distribution of the heat
flux being changed. For the first solution, in addition
to the pronounced main maximum located near the
body, two local maxima far away from the body are
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Table 1. Calculated parameters of the f low separation region for two solutions

Parameters of the problem Solution I Solution II

D, mm ReD L/D δ/D /D LS/D /D LS/D

1.00 5.0 × 103 145.00 3.00 1.130 5.53

1.25 6.25 × 103 116.00 2.40 1.170 5.74

1.50 7.5 × 103 96.67 2.00 1.233 5.99

1.75 8.75 × 103 82.86 1.71 1.316 6.17

1.80 9.0 × 103 80.56 1.67 1.351 6.20

1.85 9.25 × 103 78.38 1.62 1.389 6.24 1.239 6.17

1.90 9.5 × 103 76.32 1.58 1.451 6.28 1.154 6.14

2.00 1.0 × 104 72.50 1.50 1.540 6.34 1.096 6.12

2.25 1.125 × 104 64.44 1.33 1.682 6.44 1.038 6.07

2.50 1.25 × 104 58.00 1.20 1.762 6.50 0.993 6.01

2.65 1.325 × 104 54.72 1.13 1.832 6.55 0.982 5.99

2.80 1.40 × 104 51.79 1.07 1.870 6.58 0.963 5.97

3.00 1.5 × 104 48.33 1.00 1.887 6.61 0.943 5.94

3.13 1.56 × 104 46.40 0.96 1.891 6.60 0.929 5.93

3.25 1.625 × 104 44.62 0.92 1.886 6.59 0.911 5.91

3.40 1.70 × 104 42.65 0.88 1.887 6.58 0.894 5.93

3.75 1.87 × 104 38.67 0.80 1.876 6.55 0.873 5.97

4.00 2.0 × 104 36.25 0.75 1.854 6.51 0.870 6.00

v
X

v
X

observed; for the second isolated solution, one local
maximum is observed.

Analysis of the heat f lux values and of the intensity
of oscillations (for nonstationary regimes) at several
points on the plate were also performed (Fig. 9). The
Fig. 8. Distribution of the heat f lux along the symmetry line
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vertical lines indicate the root-mean-square devia-
tions for unsteady regimes.

Figure 9 shows that the transition to the nonsta-
tionary f low regime occurs for two solutions at differ-
ent Reynolds number values: for the first solution at
TECHNICAL PHYSICS  Vol. 66  No. 6  2021

 for various diameters D: (a) Solution I and (b) Solution II.
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Fig. 9. Heat f lux values at several points on the plate along the symmetry line.
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1.325 × 104 (D = 2.65 mm), and for the second solu-
tion at a higher value of 1.70 × 104 (D = 3.4 mm).
More extended separation region in the Solution I
probably causes the transition to non-stationary
regime at lower value of the Reynolds number.

The presented diagrams clearly show differences in
the general nature of the transition to the nonstation-
ary regime: for the first solution, the intensity of oscil-
lations is gradually increased starting from low values,
whereas, for the second solution, occurring oscilla-
tions has considerable intensity right away.

CONCLUSIONS

The multivariate parametric calculations were per-
formed for the three-dimensional problem of the
interaction of the supersonic viscous gas f low with a
blunt fin mounted on a plate with a developing bound-
ary layer. The calculations were performed for the
experimental conditions [4] at the fixed location of the
body with respect to the leading edge of the plate.
TECHNICAL PHYSICS  Vol. 66  No. 6  2021
The variation range of the Reynolds number was
from 5.0 × 103 to 2.0 × 104, which includes the station-
ary and nonstationary f low regimes. The test calcula-
tions were performed for ReD = 1.25 × 104, which were
in good agreement with the experimental and calcula-
tion data [4] for one of two possible stationary solu-
tions of the problem.

The duality of the solution in the considered range
of the Reynolds numbers were studied. The bifurca-
tion diagrams were analyzed to estimate the critical
value of the Reynolds number (ReD, cr ≈ 9.25 × 103), cor-
responding to occurrence of the second (isolated)
solution. The main features of two solutions evolving
with the increase in the Reynolds number were stud-
ied, values corresponding to the transition to the non-
stationary f low regimes were estimated.

The changes in local heat transfer caused by the
increase in the Reynolds number were studied. The
characteristic features in the heat f lux distributions
were indicated for solutions of two types.
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