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Abstract—Taking damping into account in the problems of structural dynamics is an important and nontrivial
problem. Its complexity is primarily determined by the required specification of correct characteristics of the
materials used and the choice of a model suitable for analysis. We consider some models of viscoelastic mate-
rials as regards the possibility of applying these models in harmonic analysis of damping properties of various
materials in the linear range of elastic strains. The proposed analysis is based on the use of parameters of vis-
coelastic materials, which are specified as coefficients of a differential equation of small forced vibrations. It
is shown that the models considered here are characterized by different frequency dependences of parameters
of materials being simulated. This makes it possible to combine a model with frequency dependences of its
parameters close to the frequency characteristics of parameters of viscoelastic materials under investigation.
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INTRODUCTION
Vibrations in dynamic (mechanical) constructions

are often associated with rotating elements, the mis-
balance or change in the operating regimes of which
cause undesirable vibrations both in the construction
itself and in the ambient. Consequences of resonant
effects manifested when the frequency of induced
vibrations approaches the resonance frequency of a
mechanical system can be extremely negative, which
explains the importance of the analysis of frequency
properties of constructions being designed even at the
stage of modeling. This especially concerns the con-
structions in which frequencies of vibrations vary over
a wide range. One striking example of such systems is
a quadrocopter (multicopter), in which the sources of
vibrations are motors with lift rotors, the rotational
frequency of which can vary over wide limits, with the
vibration-sensitive element (controller) being located
on the same frame as the motors. Dampers of rigs in
quadrocopters are often made of viscoelastic materi-
als.1 One often-used material is rubber, which is
widely employed for damping vibrations in various
mechanical constructions [2] (including those in air-
craft construction) due to its properties. For example,
rubber is the main damping element in the multilayer
structure of the torsion bar connecting the blade of the
main lift rotor with the shaft, which is an important
element of new-generation light helicopters [3].

The required damping of undesirable vibrations
necessitates correct modeling of dampers made of vis-
coelastic materials. Simulation of viscoelastic materi-
als is based on the linear theory of viscoelasticity of
materials with shape memory. The linear theory of vis-
coelasticity was developed on the basis of the concepts
of properties of solids such as plasticity and creep [4–7].
Investigations of properties of viscoelastic materials
(including those developed for damping of vibrations
in various mechanical constructions) have been inten-
sified. New monographs [8] and numerous publica-
tions devoted to individual theoretical and applied
problems have appeared [3, 9–13]. In these publica-
tions, the approaches to estimation of damping prop-
erties of materials used for these purposes and various
their models are described [4, 5, 8, 14]. However, the
criteria for estimating the extent of correspondence of
models to specific materials have not been worked out.
Information on parameters of damping materials
required for their simulation is also scarce. In this con-
nection, the problem of correct measurement of
parameters of viscoelastic materials becomes espe-
cially important [12, 13].

In this study, we demonstrate the difference in the
frequency properties and the possibility of using the
frequency dependence of parameters of damping
materials for some available models of viscoelastic
materials as a criterion for selecting parameters of an
appropriate model.

1 Stresses and strains in viscoelastic materials are characterized by
dissipation of energy in a closed cycle of straining and by a gradual
disappearance of strain after the complete removal of loads [1].
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Fig. 1. Schematic diagram of a system performing forced
vibrations.
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1. FORCED VIBRATIONS OF A MECHANICAL 
SYSTEM. EQUATION AND VOIGT MODEL
The differential equation of small forced vibrations

has the form
(1)

where F(t) is the generalized periodic external force
connected with generalized coordinate x; x' and x'' are
the first and the second derivatives of x with respect to
time t, respectively; and m, r, and k are the generalized
coefficients of inertia, friction, and elasticity, respec-
tively.

Therefore, the external force is opposed by three
forces: force of inertia

(2)
where m is the mass of the body to which the force is
applied; generalized friction force

where r is the generalized friction coefficient; and
quasi-elastic force

where k is the coefficient of the quasi-elastic force.
Equation (1) can also be written in the form

where δ and Ω0 are the damping coefficient and the
frequency of free vibrations of the system, respectively:

In the simulation of a mechanical system, the rep-
resentation of its dynamical modes in the form of a
system with concentrated parameters is widely used
[15, 16], which reflects in many cases the most signif-
icant factors determining the behavior of the system
under preset actions with a high degree of accuracy. In
constructing such models, the inertia properties of the
mechanism are assumed to be concentrated at individ-
ual points in the form of reduced masses, and these
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points are connected by elastic, dissipative, and geo-
metrical noninertial bonds [16].

In such an approach, the mechanical system with
forced vibrations described by Eq. (1) can be repre-
sented schematically in the form shown in Fig. 1. In
this figure, the following notation is used: F(t) is the
force acting on three elements (m is an inertial element
of mass m, r is a dissipative element with friction coef-
ficient r, and k is an elastic element with coefficient of
elasticity k).

In such a representation, the viscoelastic material
(damper) is represented using the Voigt model [5]. In
the case considered here (harmonic analysis), the per-
turbing force varies in accordance with the harmonic
law

where F0 and Fa are the constant component and the
amplitude of the harmonic component of the external
force, respectively, and Ω is the circular frequency of
the harmonic component of the acting force.

Steady-state forced vibrations are also harmonic
(having the same frequency, but shifted in phase rela-
tive to the external force):

where X0 and Xa are the constant component and the
amplitude of the harmonic component of displace-
ment x under the action of force F(t), respectively;
ϕ is the phase shift relative to the acting force; and

X0 = .

Amplitude of vibrations Xa and phase shift ϕ
depend on the vibrational frequency

(3)

(4)

In the given case (harmonic action), we have

where β(Ω) is the phase shift between force F(t) and
the rate of variation of displacement x,

(5)

The dissipative loss in steady-state forced vibra-
tions characterized by loss power Pd are described by
dissipative function Φ [17]:
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Fig. 2. Maxwell model in the system performing forced
vibrations.
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Fig. 3. Vector diagram of interacting forces.
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Energy loss Wd(T) over the period of vibrations
(where T = 2π/Ω) is given by

The integration gives

The frequency dependence of the amplitude of
vibration and the loss power has a resonance near Ω ≈
Ω0 for δ < Ω0/  [4].

2. THE MAXWELL AND KELVIN–VOIGT 
MODELS

The Maxwell model is illustrated in Fig. 2. In this
case, external force F(t) is opposed by two forces, i.e.,
inertial force F1(t) = Fm(t) = mx'', where m is the mass
of the body to which the force is applied, and damping
force F2(t) produced by series-connected elements of
friction and elasticity.

In this case, deformations2 of elements of friction
and elasticity (xr and xk, respectively) are determined
by force F2(t) = F2cos(Ωt + ψ)), where ψ denotes the
phase shift of force F2(t) relative to force F(t):3

(6)

(7)

where  is the derivative of displacement (deforma-
tion) of the friction element.

Total deformation x2 of the damper equals total dis-
placement x: x2 = xr + xk = x. In this case (taking rela-
tions (6) and (7) into account), we have

(8)

Transforming relation (8), we obtain

2 Here and below, “deformation” is the term generalizing the
strain and displacement of elements of the model, i.e., the
spring experiencing extension and compression and the piston
moving relatively to a certain casing.

3 Here and below, amplitudes of forces are denoted by the same
symbols as the forces, but without indicating the dependence on
time t; only the amplitude of force F(t) is denoted by Fa; the
same applies to displacements.
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where ξ can be determined from the expression

(10)

To compare the characteristics of the Maxwell and
Voigt models, it is convenient to transform the Max-
well model to the form of the Voigt model (see Fig. 1)
with corresponding (equivalent) parameters. In such a
transformation, F2(t) is represented by the sum of two
orthogonal components F2r(t) and F2k(t). The vector
diagram in Fig. 3 shows the relation between all the
interacting forces.

In Fig. 3, the amplitudes of vectors are denoted in
the same way as the amplitudes of corresponding
forces. The symbol ϕ denotes the phase shift of dis-
placement x relative to acting force F(t). The symbol ψ
denotes the phase shift of force F2(t) relative to force
F(t). Inertial force F1(t) = Fm(t) is in antiphase relative
to the displacement. Elastic force F2k(t) (as a compo-
nent of force F2(t)) is synphase to the displacement.
Friction force F2r(t) (the other component of force
F2(t)) is orthogonal to the displacement (shifted in
phase by 90° relative to the displacement):
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(11)

Since the Maxwell model transformed to the Voigt
model must still operate as before the transformation
(i.e., ensure the same reaction to the same action), the
parameters of elements of the transformed model
(coefficients of friction and elasticity) must change in
a certain way.

We denote the coefficients of friction and elasticity
in the transformed Maxwell model by re and ke,
respectively. The expressions for F2k, F2r, and F2 taking
relations (2), (4), and (5) into account can, then, be
written in the form

(12)

(13)

Expression (9) for the total deformation in the
Maxwell model taking relation (13) into account takes
the form

(14)

In this case, deformation amplitude X2 has the form
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Since x2 = x, we have X2 = Xa, which yields, after
transformation (15), taking (3) into account,
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In the transformed Maxwell model,  = ke/m,
which reduces expression (16) to

(17)

Thus, we have obtained an equation connecting
parameters re and ke of the transformed Maxwell
model with parameters r and k of the initial model.

The second equation is defined as F2k = keXa.
Expression (12) defined component F2k of force F2 as
a function of force Fa and parameters re and ke of the
transformed Maxwell model. However, this compo-
nent can also be defined in terms of parameters r and
k of the initial model; namely,

which yield, with taking relations (13) and (10) into
account,

(18)

Equating expressions (12) and (18), after the trans-
formation, we obtain

(19)

Equations (17) and (19) form a system the solution
of which for re and ke gives

(20)
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It can be seen that the coefficients of the trans-
formed model in this case become dependent on fre-
quency.

If we consider the more complex Kelvin–Voigt
model [8, 9] shown in Fig. 4 and transform it into the
Voight model, the parameters of the transformed
model will also depend on frequency in the manner
characteristic of the given model:
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Fig. 4. Kelvin–Voigt model in a system performing forced
vibrations.
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Fig. 5. Example of frequency dependences of the equiva-
lent friction coefficients in the Maxwell model (solid
curve) and in the Kelvin–Voigt model (dashed curve).

Fig. 6. Example of frequency dependence of the equivalent
coefficients of elasticity in the Maxwell model (solid
curve) and in the Kelvin–Voigt model (dashed curve).
(23)

In these expressions, indices k1 and k2 indicate an
additional elastic element and the elastic element in
the Voigt model, respectively (see Fig. 4).

The frequency dependences of the parameters of
the transformed Kelvin–Voigt model were obtained
using the method of electromechanical analogies
[18–20], which considerably simplifies calculations in
complex cases. The derivation of these dependences is
given in the Appendix. These dependences are more
complicated than in the case of the Maxwell model
and are more adaptable as regards the possibility of
their tuning to the frequency dependences of parame-
ters of the viscoelastic material under investigation.

3. EXAMPLE OF CALCULATION
OF FREQUENCY CHARACTERISTICS

By way of example, let us consider the Maxwell and
Kelvin–Voigt models of rubber 57–7024–110, which
are transformed to the Voigt model. The results of
measurements of relaxation parameters of the rubber,
which were taken for a sample strain of 50%, were
given in [21]. These results were used for determining
the elastic modulus of rubber at frequencies close to
zero (E0 = 1.73 MPa) and the elastic modulus for rub-
ber in the range of high frequencies tending to infinity
(E∞ = 3.6 MPa). The parameters of the transformed
Kelvin–Voigt model at frequencies tending to zero
and infinity were chosen equal to the corresponding
parameters of rubber at the same frequencies. In
choosing the parameters of the Maxwell model, the
equality of the elastic coefficients of the model and of
the material was ensured only in the range of frequen-
cies tending to infinity. For better visualization, Figs. 5
and 6 show examples of the frequency dependences of
equivalent friction coefficients (re and rek) and coeffi-
cients of elasticity (ke and kek) in the Maxwell and Kel-
vin–Voigt models transformed to the Voigt model.

In Figs. 5 and 6, the following notation was used:
r(M) and k(M) are the coefficients of viscous friction
(r) and elasticity (k) in the Maxwell model, respec-
tively; r(KF), k1(KF), and k2(KF) are the coefficients
of viscous friction (r) and elasticity (k1 and k2) in the
Kelvin—Voigt model, respectively; re and rek are the
values of coefficients of viscous friction (re and rek) in
the Maxwell and Kelvin–Voigt models transformed to
the Voigt model, respectively; ke and kek are the values
of equivalent coefficients of elasticity (ke and kek) of
the Maxwell and Kelvin–Voigt models transformed to
the Voigt model, respectively; and  f/fn are the values
of normalized frequencies.
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The frequency normalization was performed so
that the average value of the coefficient of elasticity in
the Kelvin–Voigt model for such a material corre-
sponded to a frequency of 1 Hz.
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Fig. 7. (a) Kelvin–Voigt model and (b) its electrical analog.
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4. CONCLUSIONS. CHOICE OF THE MODEL 
OF A VISCOELASTIC MATERIAL

The models of viscoelastic materials reduced to the
same form corresponding to the differential equation
of forced vibrations are characterized by parameters
differing in their frequency dependences. For exam-
ple, the parameters in the Voigt model are frequency-
independent, while the frequency dependences of the
parameters of the Maxwell and Kelvin–Voigt models
are defined by expressions (20)–(23).

The choice of an appropriate model for analysis of
damping processes of the materials in question is a
complicated problem, because the number of physical
mechanisms of damping of vibrations in actual mate-
rials is very large [14] and these mechanisms are either
unknown or immaterial in the context of the problem
under investigation. Nevertheless, irrespective of
damping mechanisms, the simulation of mechanisms
of damping of vibrations in many practical problems is
a necessary stage of designing mechanical systems.
Our analysis of several models of a viscoelastic body
shows that, to choose the model of a given damping
material correctly, it is necessary not only to know
(determine) its parameters in some specific condi-
tions, but also to know the frequency dependence of
these parameters in the range of frequencies typical of
the system being designed. We can then use a model of
the Voigt type as the model of the viscoelastic mate-
rial, but with frequency-depending parameters. In this
case, the frequency dependences of the model param-
eters and the corresponding parameters of the actual
materials must be as close as possible in the preset fre-
quency range. This model can be a transformation of a
certain model (any of the known models or the model
synthesized for the first time) with elements having
frequency-independent parameters.

Summarizing the results, we can formulate the fol-
lowing conclusions.

1. Damping properties of viscoelastic materials in
mechanical constructions are estimated by indices
that can be determined in terms of the coefficient of
TECHNICAL PHYSICS  Vol. 66  No. 3  2021
the differential equation describing the behavior of the
system under a harmonic action.

2. These coefficients are parameters of the
mechanical Voigt model of a viscoelastic material.

3. In this study, it is shown that any mechanical
model of a viscoelastic material, which is a combina-
tion of frequency-independent elements of viscous
friction and elasticity, can be transformed to the Voigt
model with frequency-dependent parameters.

4. We propose to use the frequency dependences of
parameters of mechanical models (of viscoelastic
materials) transformed to the Voigt model for estimat-
ing the extent of correspondence of the model to the
viscoelastic material by comparing the frequency
dependences of the parameters of the model and of the
material.

5. To carry out such a comparison, the parameters
of the viscoelastic material much be expressed in terms
of the coefficients of the corresponding differential
equation.

APPENDIX
Application of the Method of Electromechanical 

Analogies in the Transformation of the Kelvin–Voigt 
Model to the Voigt Model

The Kelvin–Voigt model of a viscoelastic material
and its electrical analog are illustrated in Figs. 7a and
7b, respectively.

In Fig. 7, the following notation is used: rF and kF
are the dissipative and elastic elements (respectively)
of the Voigt model, which is part of the Kelvin–Voigt
model; kK is an additional elastic element of the Kel-
vin–Voigt model; CF and RF are the electric capaci-
tance and resistance, which are analogs of elements kF
and rF, respectively, and CK is the capacitance that is an
analog of element kK.

All elements of the Kelvin–Voigt model and their
electric analogs shown in Fig. 7 are frequency-inde-
pendent parameters. To analyze the frequency proper-
ties of the Kelvin–Voigt model, it is convenient to use
its electrical analog or transform this model to the
Voigt model with frequency-dependent parameters as
shown in Fig. 8.

In this figure, the following notation is used: Ce(f)
and Re(f) are frequency-dependent elements (electric
capacitance and resistance, respectively) of the elec-
tric circuit equivalent to that shown in Fig. 7b, and
ke(f) and re(f) are frequency-dependent coefficients of
elasticity and friction (respectively) of the elements of
the Voigt model equivalent to those in the Kelvin–
Voigt model shown in Fig. 7a.

Parameters ke(f) and re(f) of the transformed model
can easily be determined from the results of calcula-
tion of parameters Ce(f) and Re(f). To determine
parameters Ce(f) and Re(f), we compare the expres-
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Fig. 8. (a) Voigt model and (b) its electrical analog with
frequency-dependent parameters.
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sions for the input resistance of two electrical analogs
shown in Figs. 7b and 8b.

The expression for input resistance Zk of the analog
of the Kelvin–Voigt model has the form

(A.1)

where Yk is the input conductance of the electric cir-
cuit that is an analog of the Kelvin–Voigt model; Ω is
the frequency; and Ck, RF, and CF are elements of the
electric circuit that is an analog of the Kelvin–Voigt
model.

Expression (A.1) can be transformed to

(A.2)

We compare this expression with the expression for
input resistance Ze of the transformed circuit shown in
Fig. 8b:

(A.3)

Here, Re(f) and Ce(f) are frequency-dependent
parameters of the transformed circuit.

Equating the real and imaginary parts of expres-
sions (A.2) and (A.3), we obtain
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(A.5)

Taking into account the rules of transition from the
mechanical model to the electrical analog, in accor-

dance with which re(f) = Re(f) and ke(f) =  (see

Fig. 6), and also rF = RF, kF = , and kK =  (see

Fig. 7), we obtain, from expressions (A.4) and (A.5),
after transformations, the sought relations for the
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parameters of the transformed model, which corre-
spond to expressions (22) and (23):

In this case, the Voigt model with parameters re(f)
and ke(f) of the transformed model fully corresponds
to the Kelvin–Voigt model with parameters rF, kF,
and kK.
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