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Abstract—The solution to the problem of the shape of the lateral surface of a vertical 3D catenoidal liquid
bridge of small volume between two arbitrary convex solid surfaces in the axisymmetric case taking into
account the gravity force is presented. A variational formulation of the initial problem is given. The solution
is found by the iteration method under the assumption of a small Bond number. An algorithm of the iterative
process is proposed. We have detected domains of variation of parameters in which the uniqueness of the
solution is not observed. It is found that the maximal number of different lateral surface profiles of the liquid
bridge, which correspond to a single chosen set of parameters, is four. By way of example, the problem of the
liquid bridge shape between two spheres is solved.
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INTRODUCTION
In our earlier publications [1, 2], the problem of the

shape of a vertical catenoidal liquid bridge between
two solid horizontal planes was solved. Such a prob-
lem appears, in particular, in analysis of the shape of
liquid meniscuses formed during the crystal growth by
the Stepanov method [3]. However, the crystallization
front in this process is known to be not f lat, but a
small-curvature convex surface. For this reason, the
problem of the shape of a liquid bridge between two
arbitrary convex solid surfaces is topical. Problems of
this type are solved using both numerical and asymp-
totic methods. The asymptotics of the surface shape of
the horizontal liquid bridge between two solid vertical
planes was constructed in [4] for small Bond numbers.
In [5, 6], an original approach to determining the
shape of a liquid bridge between two spheres was pro-
posed based on the solution of the inverse problem.
The classification of the shapes of liquid bridges was
given in [5], while their experimentally obtained pho-
tographs are presented in [6]. Numerous publications
devoted to solution of the liquid bridge shape problem
and possible applications of the results of these studies
were given in [7].

In this study, we consider a variational formulation
of the problem of the shape of the lateral surface of a
vertical 3D catenoidal liquid bridge of a small volume
between two arbitrary convex solid surfaces. The
axisymmetric case is considered, and cylindrical coor-
dinates are used to solve the problem. The effect of
gravity is taken into account. It is assumed that the

Bond number is a small parameter of the problem. An
algorithm of the iterative process is proposed. By way
of example, a solution to the problem of the shape of a
liquid bridge between spheres is considered.

1. VERTICAL LIQUID BRIDGE. VARIATIONAL 
FORMULATION OF THE PROBLEM

Let us consider a vertical liquid bridge between two
solid convex surfaces (bottom and top; Fig. 1). In view
of the presumed axial symmetry, we will solve the
problem of determining the profile of the lateral sur-
face of the liquid bridge in cylindrical system of coor-
dinates (r, z). Surface tensions between the media are
α13, α14, α34, α23, and α24, respectively. The region of con-
tact of the liquid bridge with surface z = f1(r) (f1(0) = 0)
(bottom) is a circle of radius r1, while the region of
contact with surface z = (r) =  + f2(r) (f2(0) = 0)
(top) is a circle of radius r2. We denote by u1(r) and
u2(r) the sought functions describing the profiles of the
lower (u1(r)) and upper (u2(r)) parts of the lateral sur-
face of the liquid bridge. The region (neck) separating
these parts is a circle of radius  (  ≥ 0). In this study,
we consider a catenoidal liquid bridge [8]:  < min{r1,
r2}, (r) < 0, r ∈ [ , r1], (r) > 0, r ∈ [ , r2]. In
addition, we assume that angles θ1 and θ2 satisfy the
following conditions: 0 < θi < π/2 – arctan | (ri)|, i =
1, 2; i.e., the liquid wets the solid surfaces [3]. Since
there are no physical reasons for sharpening of the liq-
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370 GALAKTIONOV et al.

Fig. 1. Vertical axisymmetric liquid bridge between two
solid convex surfaces: (1, 2) solid media, (3) liquid
medium, and (4) gaseous medium; θ1 and θ2 are wetting
angles.
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uid bridge profile, the tangent to the profile at the
point with abscissa r =  must be vertical: ( ) = –∞,

( ) = +∞, and u1( ) = u2( ). It should be noted
that, because of the aforementioned constraints, func-
tions u1(r) and u2(r) are single-valued.

We assume that the volume of the liquid bridge is
fixed:

(1)

Let us introduce a functional that includes the sur-
face energy and the energy of the gravity force. The
surface energy then, in turn, consists of a component
that corresponds to the free surface of the liquid bridge
and components that corresponds to its contact with
the solid. The functional in question can be written in
the form

(2)
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where g is the acceleration due to gravity and ρ is the
density of the liquid. Thus, we have obtained the fol-
lowing isoperimetric problem: finding the minimum
of functional (2) provided that functional (1) takes a
preset value V. In accordance with the Euler theorem
on isoperimetric problems, we introduce an expanded
functional (λ is a Lagrange multiplier):

(3)

where

By varying the extended functional, we obtain two
Euler equations and two transversality conditions. Let
us introduce dimensionless variables ξ = r/V1/3,
wi(ξ) = ui(r)/V1/3, i = 1, 2; ϕ1(ξ) = f1(r)/V1/3, (ξ) =

/V1/3 + f2(r)/V1/3 = h + ϕ2(ξ) and dimensionless
parameters μ = λV1/3/α34 and B = gρV2/3/α34. Dimen-
sionless constant B is the Bond number.

In dimensionless form, the problem includes the
Euler equations for the lower and upper branch,
respectively:

(4)
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(5)

transversality conditions

(6)

(7)

conditions of contacts of the bridge with the bottom
and top,

(8)

(9)
continuity condition for the profile in the neck,

(10)

verticality conditions for the tangent in the neck,

(11)

and volume conservation condition,

(12)

2. ALGORITHM OF SOLUTION OF THE 
PROBLEM

Let us first find wetting angles θ1 and θ2 (angles
between the tangents to the curves determining the
given surfaces and the tangents to the lateral surface
profile of the liquid bridge at points ξ1 and ξ2, respec-
tively). The expressions for the cosines of these angles
have the form

Consequently, transversality conditions (6), (7)
yield cos(θi) = αi0, i = 1, 2, i.e., the Dupré–Young
conditions [9] (formula (1.4)). It can be seen that,

 ξ ξ  = ξ ϕ ξ − ξ − μξ
 ξ + ξ 

ξ < ξ < ξ

2
2 2

2
2

2

' ( ) ˆ( ( ) ( )) ,
'1 ( ( ))

;*

wd B w
d w

+ ϕ ξ ξ = α + ϕ ξ
+ ξ

α − αα =
α

21 1 1 1
10 1 1

2
1 1

14 13
10

34

' '1 ( ) ( ) '1 ( ( )) ,
'1 ( ( ))

,

w

w

+ ϕ ξ ξ = α + ϕ ξ
+ ξ

α − αα =
α

22 2 2 2
20 2 2

2
2 2

24 23
20

34

' '1 ( ) ( ) '1 ( ( )) ,
'1 ( ( ))

;

w

w

ξ = ϕ ξ1 1 1 1( ) ( ),w

ξ = + ϕ ξ2 2 2 2( ) ( );w h

ξ = ξ1 2( ) ( );* *w w

ξ = −∞ ξ = +∞1 2' '( ) , ( ) ;* *w w

ξ ξ

ξ ξ
ξ

 
π ξ − ϕ ξ ξ ξ + ϕ ξ − ξ ξ ξ 
 
 

 
+ π ϕ ξ − ϕ ξ ξ ξ = 

 
 

 



1 2

* *

*

1 1 2 2

2 1
0

ˆ2 ( ( ) ( )) ( ( ) ( ))

ˆ2 ( ( ) ( )) 1.

w d w d

d

θ = ξ − ϕ ξ

+ ξ ϕ ξ= =
+ ξ + ϕ ξ2 2

' 'cos( ) cos(arctan( ( )) arctan( ( )))

' '1 ( ) ( ) , 1,2.
' '1 ( ( )) 1 ( ( ))

i i i i i

i i i i

i i i i

w

w i
w

TECHNICAL PHYSICS  Vol. 66  No. 3  2021
when the given surfaces are parallel planes, we obtain
the expressions given in [1].

To construct the effective algorithm for solving
problem (4)–(12), we perform the normalization to
quantity  as follows:

(i) new independent variable η = ξ/ ;

(ii) new sought functions (η) = wi(ξ)/ , i = 1, 2;
and

(iii) modified given functions ψ1(η) = ϕ1(ξ)/ ,
(η) = h/  + ϕ2(ξ)/  = H + ψ2(η).

Let us introduce notation b = B( )2 for the modi-
fied Bond number and M = μ  for the modified
Lagrange multiplier.

In the new variables, Eqs. (4) and (5) take the form

(13)

(14)

Integrating these equations, we obtain

(15)

(16)

Passing in these relations to the limit η → 1 taking
into account conditions (11), we obtain integration
constants C1 and C2: C1 = –1 and C2 = 1. Dividing
both parts of relations (15) and (16) by η, we reduce
these equations to the forms
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(18)

Auxiliary functions Φ1(η) and Φ2(η) introduced
above must satisfy inequalities 0 < Φ1(η) ≤ 1, η ∈
[1, η1], 0 < Φ2(η) ≤ 1, η ∈ [1, η2] to ensure the required
signs of functions (η) and (η) (see above). Solving
Eqs. (17) and (18) with respect to the derivatives, we
obtain the following equations:

(19)

These equations imply that

i.e., the fulfillment of verticality conditions for the
tangent at the neck (11). In the vicinity of point η = 1,
functions Φ1(η) and Φ2(η) can be written in the form
Φi(η) = 1 + O(η – 1), i = 1, 2; therefore, the singular-
ities on the right-hand sides of Eqs. (19) are integrable
and we can obtain the following expressions for the
sought functions (η) and (η):

(20)

(21)

while analogs of conditions for the contact of the liquid
bridge with the bottom and top are fulfilled: (η1) =
ψ1(η1) and (η2) = H + ψ2(η2). Satisfying the analog
of condition (10), we arrive at the relation

(22)

The expression for function (η) then takes the
form

(23)

Using relations (19), we can write transversality
conditions (6) and (7) in the form
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Solving these equations for quantities Φ1(η1) and
Φ2(η2), we obtain

(24)

After the substitution of expressions for Φ1(η1) and
Φ2(η2) into these relations, we obtain the following
equations for η1 and η2:

(25)

(26)

Let us write condition of volume conservation (12)
in the new variables:

(27)

Integrating by parts, we transform this relation to
the form

(28)

Thus, we have derived all the relations required for
solving the problem.

Let the Bond number be a small parameter of the
problem in question. We propose the following algo-
rithm of its solution for preset values of α10, α20, and .

We organize the iterative process to small parame-
ter b (main iterative process).
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2.1. First Iteration (Construction
of the Zeroth Approximation)

At the first iteration, we assume that b = 0 (we con-
struct the approximate solution to the problem disre-
garding the gravity force). We specify the value of
parameter M from the range of admissible values and
define functions Φ1(η) and Φ2(η) using formulas (17)
and (18). We consider that admissible values of param-
eter M are those for which each of Eqs. (25), (26) has
at least one positive root greater than unity. For posi-
tive admissible values, there is only one such root for
each equation, while for negative admissible values,
each equation has two such roots. In the latter case, to
one value of parameter M correspond four solutions to
the problem, which are determined by the choice of
roots of Eqs. (25) and (26). There are the following
combinations of chosen roots: variant (+ +), i.e.,
maximal roots of these equations; (+ –) are the maxi-
mal root of Eq. (25) and the minimal root of Eq. (26);
in variant (– +), conversely, there are the minimal
root of Eq. (25) and the maximal root of Eq. (26); and,
finally, (– –); i.e., both roots are minimal. Further, we
solve nonlinear equations (25) and (26) for quantities
η1 and η2. For this purpose, we reduce the solution of
the nonlinear equations to the solution of a sequence
of quadratic equations by the iterative method (with an
auxiliary iterative process required only for construct-
ing the zeroth approximation to initiate the main iter-
ative process and to account for the shapes of the given
surfaces between which the liquid bridge is located).
Namely, we believe that (r) = 0, (r) = 0; then,

αi(ηi) = , i = 1, 2 (liquid bridge between the
planes; Eqs. (25) and (26) are quadratic equations)
and find their positive roots, which are greater than
unity. We determine quantity  using formula (28).
We are using these found values of roots η1 and η2 for
calculating αi(ηi), i = 1, 2. We then again solve qua-
dratic equations (25) and (26) and find  using for-
mula (28). We continue this process until the differ-
ence in the values of the roots at two sequential steps
of the auxiliary iterative process becomes smaller than
a preset value determining the accuracy of calculations
for the zeroth approximation. We find the value of H
using formula (22) and functions (η) and (η) using
formulas (20) and (23); finally, we determine ξ1, ξ2, h,
w1(ξ), w2(ξ), θ1, and θ2. This completes the construc-
tion of the zeroth approximation for given values of
αi0, i = 1, 2, and for the chosen value of parameter M.
Up to four different profiles can correspond to one
value of parameter M.

It we wish to restrict ourselves to finding the zeroth
approximation, we iterate over all admissible values of
parameter M, construct the dependence of the liquid
bridge height on parameter M, and find the solution
corresponding to the given value of the height.

1'f 2'f
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2.2. Second and Next Iterations
of the Main Iterative Process

If, however, we do not confine our analysis to
investigation of a liquid bridge in zero gravity, we con-
tinue calculations for the chosen value of parameter
M. Namely, we find the value of parameter b = B( )2

and determine new auxiliary functions Φ1(η) and
Φ2(η) by formulas (17) and (18) using for calculations
functions , , ψ1, and ψ2 obtained at the first itera-
tion. Equations (25) and (26) at the second iteration
are quadratic equations with respect to η1 and η2 with
constant coefficients, because we calculate these coef-
ficients using the values obtained at the previous iter-
ation. We find η1, η2, , H, (η), and (η), as well as
ξ1, ξ2, h, w1(ξ), and w2(ξ), and then we find the new
value of parameter b = B( )2 and we perform the third
iteration analogously, and so on until the differences
in the values of η1 and η2 at two sequential steps of the
main iterative process become smaller than a certain
value determining the accuracy of the solution to the
problem.

We then perform all the calculations described
above for each admissible value of parameter M, con-
struct the dependence of liquid bridge height h on
parameter M, and find the solution to the problem that
corresponds to the given value of the bridge height.
The maximum number of such solutions is four.

3. EXAMPLE OF CALCULATION OF A LIQUID 
BRIDGE BETWEEN TWO SPHERES

Let us use the above algorithm for calculating the
particular case of a vertical catenoidal liquid bridge
between two spheres. Let the bottom be a sphere of

radius R1 = 6: ϕ1(ξ) = –R1 +  and the top be
a sphere of radius R2 = 8: (ξ) = h + φ2(ξ), φ2(ξ) =

R2 – . We perform calculations for the Bond
number equal to 0.25, α10 = 0.5, α20 = 0.7, and carry
out the first and second iterations. We present the
results of calculations after the first step of the main
iterative process since the differences in the results are
small, and the profile graphs practically coincide.
Figure 2 illustrates this situation. We choose variant
(+ +) because the values of parameter b characterizing
the radius of the neck in this variant are maximal.

It can be seen that the main iterative process con-
verges well. As regards the convergence of the auxiliary
iterative process, its four steps yield an error of 0.5%.
Let us introduce notation h0 = H , where the values
of H and  are taken after four steps.

Figure 3 shows the dependence of the liquid bridge
height h0 (the distance between the spheres) on
parameter M. For admissible positive values of param-
eter M, we have a single curve, while, for admissible

ξ*
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Fig. 2. Liquid bridge profiles after the first step of the main
iterative process (solid curve) and after the second step
(dashed curve) for α1 = 0.5, α2 = 0.7, M = –0.01, R1 = 6,
R2 = 8, B = 0.25, and b = 0.1. Variant (+ +).
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Fig. 3. Dependence of liquid bridge height h0 on parameter M.
Curves 1–4 correspond to variants (+ +), (+ –), (– +), and
(– –) of the choice of the values of roots, respectively.
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(b) (+ –), M = –0.185; (c) (– +), M = –0.14, and (d) (– –), M = –0.013.
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negative values of M, we obtain four different curves
corresponding to four variant of the choice of roots of
Eqs. (25) and (26). There exists the maximal value of
the liquid bridge height (there are no solutions for
height exceeding this value). There are intervals of
height variation, which correspond to the existence of
TECHNICAL PHYSICS  Vol. 66  No. 3  2021
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one, two, three, and four solutions. In addition, it can
be seen from this figure that, in contrast to a liquid
bridge between two parallel solid surfaces, there exists
in this case a finite positive value of parameter M cor-
responding to the point of tangency of the spheres.

Finally, Fig. 4 shows four different profiles of the
lateral surface of the liquid bridge between the spheres,
which correspond to a single value of liquid bridge
height h0 = 0.9 and four different values of parameter
M. It should be noted that the curve in Fig. 4a corre-
sponding to variant (+ +) correlates with the photo-
graphs obtained during the experiment and given in
[6], while the remaining three graphs reflect other the-
oretically possible profiles.

CONCLUSIONS

We have proposed an effective algorithm for solv-
ing problem of determining the shape of the lateral
surface of a vertical catenoidal liquid bridge between
solid convex small-curvature surfaces taking into
account the gravity force. A variational formulation of
the problem has been given. The solution is found by
the iterative method under the assumption of small-
ness of the Bond number. The iterative process is
started from the case of a liquid bridge between paral-
lel planes. The lack of uniqueness of the solution to the
problem has been discovered. It has been established
that the maximum number of different solutions for a
fixed set of given parameters is four. By way of exam-
ple, an approximate solution to the problem of the
shape of a liquid bridge between two spheres has been
constructed. The dependence of the number of solu-
tions on the bridge height has been investigated. Four
different profiles of the bridge lateral surface, which
correspond to a certain value of the bridge height, have
been presented.
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