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Abstract—The Fourier law correctly describes heat transport in most practical macroscopic problems. How-
ever, for heat transfer in rapid processes, heat transport on micro- and nanoscales, and heat transfer in mate-
rials with an internal structure (porous media and biological tissues), other models are required that take into
account nonlinear effects, as well as temporal (memory) and spatial nonlocality. Such models are considered
in this review, including models with time lag, phonon and thermodynamic models, as well as models based
on differential equations in fractional derivatives.
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INTRODUCTION
The Fourier model is based on defining relation

which, after the substitution into the energy conserva-
tion law for a stationary solid,

leads to the classical parabolic heat conduction equa-
tion (also known as the Fourier—Kirchhoff equation)

(1)

The Fourier law can be derived directly in the clas-
sical nonequilibrium thermodynamics based on the
local equilibrium hypothesis [1].

From the standpoint of nonequilibrium thermody-
namics, the Fourier law describes the linear relation
between the generalized force (temperature gradient)
and the generalized (heat) f lux [2].

The Fourier law holds if

(i)  ≫ O(1),

(ii)  ≫ O(1),

(iii) T ≫ 0 K, 
where L is the characteristic size of the system, Λ is the
mean free path of heat carriers, and τ is the relaxation
time. Ratio Kn = Λ/L is known as the “Knudsen num-
ber,” as in the dynamics of rarefied gases.

Heat waves in the form of “second sound” [3] in
helium II at 1.4 K were observed by Peshkov in 1944 at
a velocity of about 19 m/s, which is an order of magni-
tude smaller than the velocity of sound in helium II [4].

Later, second sound was observed in cryogenic
conditions in other materials [5, 6], i.e., solid helium-
3 [7], sodium fluoride (at 10 K [8–10]), bismuth (at
3.4 K [11]), sapphire and strontium titanate [12], and
graphite at a temperature above 100 K [13].

The wave nature of heat propagation and relaxation
processes become predominant, and the material
“memory” effects, as well as nonlinear and nonlocal
effects become significant for

(i) ultrafast heating (laser heating and melting
[14],1 for example, femtosecond heating of metal films
[16–18] or thin solid argon films [19]), fast solidifica-
tion of liquid metals [20], a transition to the glass-like
state of supercooled liquids [21], and experiments with
heat pulses at room temperature [22];

(ii) heat transport on nanoscales [23–26] (micro-
electronic devices [27–30], e.g., “hot” elements in
nanotransistors [31–34], nanostructured thermoelec-
tric devices [35], heterostructures [36], and laser
plasma formed during irradiation of small targets
[37]), and heat transfer in DNA during denaturation
(“melting”) and unwinding of a double spiral into two
individual strips [38];2
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1 A pulsed laser ensures better localization of heat as compared to
a continuous-wave laser [15].

2 The Fourier law considerably overestimates the heat dissipation
rate from sources with sizes smaller than the phonon mean free
path [39], which is important for analysis of thermal regimes of
microelectronic devices. However, this problem becomes not so
acute on account of the new “collective diffusion” effect that
has been discovered recently by Hooge boom-Pot et al. [39]:
when the distance between nanosize heat sources becomes
smaller than the phonon mean free path, scattering of phonons
by phonons “originating” from a neighboring heat source
occurs, which intensifies the dissipation of heat.
1



2 ZHMAKIN
(iii) heat transport in granular and porous media
[40, 41] including porous silicon [42], and

(iv) heat transport in biological tissues [43–49].
It should be noted that the errors associated with

the application of the Fourier law beyond the range of
its application are sometimes insignificant. For exam-
ple, Wilson and Cahill [50] listed the following reasons
for which errors in determining the thermal conduc-
tivity of diamond are not important in analysis of ther-
mal regimes of microelectronic devices, in which dia-
mond heat distributers are used:

(1) ballistic–diffusion effects in polycrystalline
diamond films grown by chemical deposition from the
vapor phase are much weaker than in single crystals
due to phonon scattering from grain boundaries;

(2) the thermal conductivity of the substrate is sig-
nificant only for sizes of the active region experiencing
superheating larger than 1 μm (at least, in GaN tran-
sistors with a high electron mobility);

(3) for a high density of devices, horizontal tem-
perature gradients are small.

Pulsed lasers with a pulse duration from nanosec-
onds to femtoseconds are used in the wide range of
medical technologies (optical tomography [51], pho-
todynamic therapy [15, 52], and hyperthermia [53–
57]). Temperature control in tissues can be enhanced
by injecting nanostructures [58].

Time lag can appear in a material due to the pres-
ence of carriers with different energies [59] (the well-
known example in the solid state physics is energy
relaxation between the electron and phonon subsys-
tems), e.g., energy transport from free electrons in the
lattice of metals [60, 61] heated by ultrashort laser
pulses [62, 63] or in materials with a heterogeneous
internal structure.

Biological tissues contain cells, superstructures, as
well as liquid and solid elements. The heating or cool-
ing of biological tissues induces a series of chemical,
electrical, and mechanical processes (e.g., diffusion,
change in the electric potential, and osmotic f lows
through a cellular membrane; cellular membranes can
store energy) [64]. Thus, propagation of heat in bio-
logical tissues induces energy exchange at various lev-
els [64–66].

There are various approaches to experimental
investigation of heat transfer on micro- and
nanoscales:

(i) 3ω method [67] based on the measurement of
the third harmonic in voltage under sample heating by
a sinusoidal wave of frequency ω;

(ii) scanning thermal microscopy [68];
(iii) bimetallic devices;
(iv) optical methods;
(v) coherent X-ray methods;
(vi) analysis of thermal ref lections.
In recent years, the following computational meth-
ods have been used:

(i) calculations based on “first principles” (ab ini-
tio calculations);

(ii) nonequilibrium Green’s function;
(iii) molecular dynamics method [69];
(iv) Monte Carlo method;
(v) multiscale calculations.
The relaxation time in homogeneous materials

ranges from 10–8 to 10–14 s [70–72] (for example, this
time is 3 ps for silicon [73], 4.0–6.4 ps for mercury,
and 5.1–7.3 ps for molten gallium [74]); however, the
relaxation time in granulated media and biological
objects can reach 30 s. For example, Kaminski [70]
reported on relaxation time of 20 s for sand and 30 s for
NaHCO3; Mitra et al. [75] measured relaxation time
of 15 s for processed meat.

However, Grassman and Peters [40], as well as
Herwig and Beckert [76], did not find any proofs of
the hyperbolic type of heat propagation in materials
with heterogeneous internal structure. Roetzel et al.
[77] explained these discrepancies by methodical
errors in early experiments, associated with indepen-
dent determination of thermal and physical properties
of materials and the measurement of relaxation time.
Roetzel et al. determined all the parameters simulta-
neously from the same experiment. They confirmed
the deviations from the Fourier law, but obtained
smaller values for relaxation time (2.26 s for sand and
1.77 s for processed meat).

In later experiments, Antaki [78] measured a relax-
ation time of 2 s for processed meat.

The results of observation of thermal waves in liv-
ing tissues were described in review [79]. The errors in
the predicted temperature distribution in tissues in
cryosurgery and cryoconservation can be manifested
in the form of thermoelastic stresses [80–82] and the
emergence of cracks in tissues [83, 84] because of sub-
stantial thermal expansion [85]. Mechanical waves
were also observed in solid argon films under sudden
heating [86].

Yu et al. [87] used the low-frequency impedance
method for studying the response of biological tissues
to instantaneous switching from strong cooling and
heating.

For analyzing heat transfer in living biological tis-
sues, the contribution of arterial and venous blood
flows must be taken into account [49, 88, 89].

The continual models of heat transfer with account
for the blood circulatory system are developed by aver-
aging the effect of a large number of blood vessels in
the part of biological system under investigation. The
best-known and unconditionally most important con-
tinual model was proposed by Pennes [90] in 1948 and
is known as the “Pennes equation” (sometimes, the
“heatsink model” [91])
TECHNICAL PHYSICS  Vol. 66  No. 1  2021



HEAT CONDUCTION BEYOND THE FOURIER LAW 3
(2)

(3)

where T, ρ, c, and λ are the temperature, density, spe-
cific heat, and thermal conductivity of tissues as a
homogeneous medium, ωb is the velocity of blood per-
fusion, cb is the specific heat of blood, Ta is the arterial
blood temperature, and  and Qext are heat sources
associated with metabolic reactions (these sources can
usually be ignored in the cryobiological problems) and
an external energy source.

The obvious extension leading to the nonlinear
(modified) Pennes equation involves the account for
the temperature dependence of the blood perfusion
velocity ωb =  + T [92].

Deviations from the Fourier law are also observed
for low-dimensional objects (spatially bounded sys-
tems [93]) such as thin films, carbon and boron-
nitride nanotubes, nanowires, graphene strips [94–
96], and polymer chains [97, 98]. Low-dimensional
objects demonstrate the so-called “scale effect” or
“size effect”: thermal conductivity decreases with the
sample size. For example, the thermal conductivity of
crystalline nanowires is much lower than the values
for the bulk material and decreases with the wire
diameter [42] and upon an increase in the surface
roughness [99].

The model explaining such a behavior combines
the incoherent scattering of short-wavelength pho-
nons at the surface and almost ballistic propagation of
long-wavelength phonons.

The thermal conductivity of superlattices is much
lower than the thermal conductivity of materials con-
stituting them.

Upon a further decrease in its sizes, a nanowire is
transformed into a molecular chain, while thin films
are transformed into molecular strips. The Fermi–
Pasta–Ulam (FPU) famous numerical experiment
revealed that the thermal conductivity of a long chain
of interacting particles can diverge upon an increase in
the chain length as a positive power of the chain length
in the 1D case and can demonstrate the logarithmic
divergence in 2D problems [100] for so-called “inte-
grable systems” (FPU chain, unordered harmonic
chain, 1D diatomic gas, and the diatomic Toda lat-
tice). This problem and its connection with the
extremely high thermal conductivity of carbon and
boron nitride nanotubes [101, 102] and graphene
strips are not considered in this review. These ques-
tions were discussed in detail in the reviews by
S. Lepri, R. Livi, and A. Politi, “Thermal Conduction
and Classical Low-Dimensional Lattices” (Phys. Rep.
377 (1), 1 (2003)) and S.R. Xie, G. Zhang, B. Li Liu,
and X. Xu, “Anomalous Heat Conduction and Anom-
alous Diffusion in Low-Dimensional Nanoscale Sys-
tems” (Eur. Phys. J. B 85, 337 (2012)), and in the
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monograph by S. Lepri “Thermal Transport in Low
Dimensions: from Statistical Physics to Nanoscale
Heat Transfer,” Lecture Notes in Physics Books, 921
(Springer, 2016).

It should be borne in mind that the temperature at
a point can be determined exactly in the presence of
local equilibrium; therefore, we can reliably consider
the temperature difference between points separated
by a distance no shorter than the mean free path of
energy carriers [103, 104].

A number of models generalizing the Fourier law
have been developed by modifying the defining rela-
tion between the temperature gradient and the heat
flux. Most of these models take into account temporal
nonlocality (material “memory”); some of them
include spatial nonlocality effects for materials with an
internal structure. Takahashi [105] noted that spatial
nonlocality is associated with the emergence of a
mesoscale intermediate between the microscopic and
macroscopic scales.

1. MODELS WITH A TIME LAG
The general expression for the heat f lux can be

written as [106]

where Q(s) is a positive decreasing function known as
a Jeffrey relaxation kernel [107–109], which tends to
zero for s → ∞. For Q(s) = λδ(s), where δ(s) is the
Dirac delta function, we obtain Fourier law (1).

Different forms of the chosen defining relation lead
to different models with time lag (see [59, 64, 110, 111]
and the literature cited therein).

1.1. Maxwell–Cattaneo–Vernotte Equation

The defining relation for the Jeffrey heat f lux has
the form [107, 112]

(4)

For λ1 = 0, Eq. (4) is reduced to the well-known
Cattaneo equation (also known as the Maxwell–Cat-
taneo–Vernotte equation), which is a defining relation
derived independently by Morse and Feschbach
(1953), Grad (1958), and Vernotte (1958),

(5)

if, in addition, τ = 0, it is reduced to the Fourier law.
The Cattaneo equation can be obtained in

extended nonequilibrium thermodynamics [1, 113]
dealing with dissipative f lows (such as heat f lows) as
basic independent variables. Therefore, the entropy
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4 ZHMAKIN
depends on the internal energy and heat flux, s = s(u, q),
and obeys the evolution equation

where Js is the entropy f lux and σs is the entropy pro-
duction rate.

The definition of nonequilibrium entropy as T–1 =
∂s/∂u and the assumption that ∂s/∂q = –αT, where α
is a material coefficient, leads (with account for the
energy balance for a solid at rest) to equation

therefore,

The simplest way to ensure positive entropy pro-
duction rate is to presume a linear relation between the
heat f lux and the thermodynamic force (expression in
the parentheses),

where μ is a positive coefficient. Introducing the nota-
tion α/μ = τ and μ–1T–2 = λ, we obtain the Cattaneo
equation.

Jou and Casa-Vazouez [114] demonstrated that it is
possible to include in this way nonlocal terms into the
Cattaneo equation, assuming that the generalized
entropy, the entropy f lux, and the entropy production
rate depend on heat f lux tensor :

This equation differs from the Guyer–Krumhansl
equation (see below) in the absence of terms of form
∇∇ ⋅ q.

Relaxation time τ is the time lag required for stabi-
lization of the stationary heat f low in the volume ele-
ment to which a temperature gradient is applied; time
lag is a consequence of “thermal inertia.”

Thermal perturbations in this model propagate
with finite velocity:

The estimates of the relaxation time for solids and
rarefied gases can be written, respectively, as [74]

and
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where  is the velocity of phonons in a solid or the
average velocity of molecules in a gas,

where ν is the kinematic viscosity of the gas and m is
the mass of a molecule.

Sometimes, the Cattaneo number is used, which is
defined as

where κ = λ(ρC) is the thermal diffusivity.
Defining Cattaneo relation (5) can be treated as a

result of the Taylor series expansion,

which is sometimes referred to as the “improved” Cat-
taneo relation or the single-phase lag (SPL) model
[18]. Cheng et al. [115] derived the equations of the
SPL model from the Boltzmann equation, using the
following approximation for the time derivative:

Recently, Li and Cao [116] have noted that the
Cattaneo model should not be treated as a particular
case of the SPL model because the value of discarded
terms in the Taylor expansion is unknown and can be
significant.

Cattaneo defining relation (5) can be written as the
integral of the temperature gradient:

Thus, the modified Fourier (Cattaneo) equation
can be written (in the case of constant properties) as
[117, 118]

This equation can be considered as a particular case
of the telegraph equation.

Frankel et al. [119] noted that an alternative formu-
lation in terms of the heat f lux (scalar equation for
three components in the general case) can be useful for
problems with boundary conditions including the heat
flux. In this case, the temperature distribution can be
found by integrating the energy conservation equation

Nie and Cao [120] compared three groups of numeri-
cal methods using different representation in terms of
temperature and heat f lux with the hybrid representa-
tion and found that the latter approach is preferable.

c
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HEAT CONDUCTION BEYOND THE FOURIER LAW 5
Sometimes, the Cattaneo equation is called the
damped version of the Fourier equation [121].

The Cattaneo model eliminates the paradox of
infinite velocity of propagation of perturbation, but
introduces a new one—the Cattaneo equation is not
invariant to the Galileo transformations: the velocity
of propagation of perturbations in a system moving
with velocity U is a nonlinear function of U [122]:

This paradox is eliminated when instead of the par-
tial derivative with respect to time, the material deriv-
ative is used [122]. Later, Christov [123] proposed that
the Oldroyd convective derivative [124] independent
of the coordinate system be used; in this case, the Cat-
taneo equation has form

Joseph and Presiosi [107] proposed that the relaxation
kernel be written as RJP = λ1δ(s) + (λ2/τ)exp(–s/τ),
where λ1 is the effective thermal conductivity and λ2 is
the elastic thermal conductivity. In this case, the heat
flux (in the 1D approximation) has form

Barletta and Zanchini [125–127] analyzed the
compatibility of the Cattaneo equation with the sec-
ond law of thermodynamics and considered the Tajfel
paradox (the excess of boundary values of temperature
for a layer with the surfaces at different temperatures)
and found that the entropy production rate can be
negative in the regions in which the heat f lux decreases
faster than |∂q/∂t| > |q|/τ. However, this result cannot
be treated as a violation of the second law of classical
thermodynamics based on the local equilibrium
hypothesis, which does not hold [128]. The Cattaneo
law is compatible with the second law in the extended
nonequilibrium thermodynamics [129, 130].

Li and Cao [131] analyzed thermodynamic prob-
lems of the SPL model. Using the expression

for the entropy production rate in the classical non-
equilibrium thermodynamics, they obtained relation

for the Fourier equation and

for the SPL model.
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Obviously, the entropy production rate for the SPL
model is not necessarily positive or zero. The second
law is satisfies in the extended nonequilibrium ther-
modynamics [129], in which the entropy production
rate is given by

In biological problems, the Cattaneo equation
(supplemented with the source terms from Pennes
equation (2), (3)) is often referred to as the model of a
thermal wave [132]; sometimes, the term “tempera-
ture wave” is also used [133].

1.2. Double Phase Lag Models

To account for relaxation effects, as well as the
microscopic structure, double phase lag (DPL) mod-
els have been introduced [134–136]:

(6)

where τq and τT are the time lags for the heat f lux and
the temperature gradient appearing due to thermal
inertia and microstructural interactions [137].

The DPL model is reduced to the SPL model (with
a single phase lag) for τT = 0 and to the Fourier law for
τT = τq = 0.

Both relaxation times are extremely short for con-
ventional materials. For example, τq and τT for gold are
8.5 and 90 ps, respectively [138].

The available data on relaxation time in biological
tissues are quite contradictive. These time range from
14–16 to 0.043–0.056 s for processed meat [78];
experiments with cow muscles give values of 7.36–
8.43 and 14.54–21.03 s [139]. Zhang [140] studied the
relaxation time depending on the properties of tissues
and blood and introduced the interfacial convective
coefficient.

Equation (6) can be written in terms of the differ-
ence in relaxation times:

Thus, the DPL model is independent of relaxation
times τT and τq separately and depends only on their
difference [141]; therefore, the SPL and DPL models
are analytically equivalent [142].

The DPL model is close [143] to hyperbolic mod-
els describing the energy exchange between electrons
and phonons [144–146], which in 1D case have form
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6 ZHMAKIN
where Te is the electron gas temperature; Tl is the lat-
tice temperature; ce and cl are the specific heats of the
electron gas and the lattice, respectively; and G is the
electron–phonon coupling constant.

Tzou [147] estimated the relaxation times in the
DPL model in terms of parameters G, ce, and cl and
obtained the values of τT and τq for copper, gold, and
lead of about 10–11 and 10–13 s, respectively.

Zhang [148] proposed the following expression for
heat transfer relaxation times in tissues:

where Ctb = (ρtCt)/(ρbCb) is the ratio of heat capacities
of tissues and blood, Ktb = λt/λb is the ratio of thermal
conductivities, ε is the porosity of tissues, and G is the
convection–perfusion parameter.

Tzou and Dai [149] considered the delays in a sys-
tem with a large number of carriers. The equations for
a system with N carriers can be written in the form

In deriving equations to the unified temperature in
a system with three types of carriers (e.g., composite
material with three components or polar semiconduc-
tors in which the energy can be transferred by elec-
trons, holes, and phonons), Tzou and Dai detected
nonlinear effects associated with  and .

Using the first terms of the expansion in τq and τT,
we obtain

The application of this relation in the energy con-
servation law gives the type-I DPL model [79, 150]
(also known as the linear DPL model [151]).

The equations of the model can be written in terms
of the heat flux instead of temperature and even in terms
of the heat flux potential defined as q = ∇φ [152].
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Wang et al. [152] proved the correctness of the
DPL model on a 1D interval with homogeneous Dir-
ichlet, Neuman, or Robin boundary conditions.
Later, Wang and Xu [153] generalized this result to the
n-dimensional case.

The type-II DPL model is obtained using the first-
and second-order Taylor expansions for q and T,
respectively:

while the type-III model (second-order DPL model
[154]) is obtained using second-order expansions for q
and T:

Sometimes, a different notation is used for distin-
guishing between DPL models with indication of
orders of expansion, e.g., DPL (2, 1) [155]. Rukolaine
[156] established that the solution in the DPL model
is unstable. Later, he confirmed this conclusion for the
type-III DPL model [157]

Quintanilla and Rake [158] (see also [159]) ana-
lyzed the stability of solutions in various versions of the
DPL model. These authors introduced a parameter
controlling the stability of solutions as the ratio of
relaxation times of the DPL model:

The authors considered the characteristic polyno-
mial associated with the Laplace transformation in a
bounded region in the case of the Dirichlet conditions.
The solution is determined by the real part of the
eigenvalue.

The results of investigation can be summarized as
follows:

(i) when the first-order approximation in τq and the
first- or second-order approximation in τT are used,
the system is always stable;

(ii) when the second-order approximation in τq and
the first-order approximation in τT are used, the sys-
tem is stable if ξ > 1/2 and unstable if ξ < 1/2;

(iii) when the second-order approximation in τq
and first-order approximation in τT are used, the sys-
tem is stable if ξ > 2 –  and unstable if ξ < 2 – ;

(iv) if ξ > 1/2, all types of the DPL models behave
identically.
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HEAT CONDUCTION BEYOND THE FOURIER LAW 7
The conditions imposed on ratio ξ =  were also

introduced by Fabrizio and Lazzari from the second
law of thermodynamics [160].

The compatibility of the DPL model with the sec-
ond law of thermodynamics in extended irreversible
thermodynamics was proved by Xu [161].

The thermal wave model, as well as the DPL
model, is actively used for calculating the heat transfer
in biological problems. For example, the action of
laser radiation on biological tissues were investigated
by Zhou et al. [162], Jaunich et al. [163], Afrin et al.
[164], Ahmadikia et al. [165], Sahoo et al. [166], Liu
and Wang [167], Poor et al. [168], Hooshomand et al.
[169], Kumar and Srivastava [170], and Jasinsky et al.
[171]. Zhou et al. [172] solved the 2D (axisymmetric)
problem for two cases (surface heating and bulk heat-
ing); these authors found that multidimensional
effects are significant.

Noroozi et al. used the thermal wave model for
studying heat transport in a strip under heating by laser
radiation and the DPL model for bulk heating of the
strip [173].

Liu et al. [132] calculated the change in tempera-
ture under the ultrasonic action in the thermal wave
model. Li et al. [174] used the DPL model for calculat-
ing the ex vivo temperature response to the action of
focused ultrasonic heating on a homogeneous phan-
tom of a biological tissue and on the heterogeneous
liver tissue.

Kumar et al. [175] used the Galerkin finite-element
wavelet method for studying hyperthermia under the
assumption of the Gaussian nature of the external heat
source.

Xo et al. [176] applied the Boltzmann lattice
method for solving the DPL model of heat transport in
a bilayer system.

Moradi and Ahmadikia [177] used the DPL model
for calculating the heat transfer in ultrafast freezing of
biological tissues (the cooling rate was about 1000°C/s
[178]) when amorphous ice was formed in the frozen
region [44].

Liu and Chen [179] investigated hyperthermia
using a magnetic f luid in the framework of the DPL
model.

Borjalilou et al. [180] applied the DPL model for
solving the thermoelasticity problem (damped vibra-
tions of a microbeam).

Chou and Yang [181] analyzed the heat transport in
a multilayer structure in the 2D case using the method
of spatiotemporal conservative elements [182]. This
method was developed for solving the Euler and
Navier–Stokes equations [183] and ensured the local
and global f lux conservation. The authors established
different heat-transfer regimes: hyperbolic, wave, dif-
fusion, and superdiffusion.

τ
τ

T

q
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1.3. Triple Phase Lag Model
The triple phase lag (TPL) model is obtained from

the DPL model by introducing, in addition to the heat
flux relaxation times and the temperature gradient, the
relaxation time for the thermal displacement gradient3

[110, 187–189]

The TPL is also used in analysis of thermoelasticity
problems (see, for example, [190]).

2. PHONON MODELS
Phonons are quantum oscillations of a lattice (elas-

tic waves can exist only for certain values of energy).
Phonons are energy carriers in dielectric and semicon-
ductor crystals. Various mechanisms of phonon scat-
tering must be considered: normal scattering (N pro-
cess), Umklapp (U process), scattering at lattice
defects, and scattering at boundaries.

The phonon distribution function is described by
the Boltzmann equation in the form

where P is the momentum and F is the external force.
For linearizing the Boltzmann equation, the fol-

lowing approximation of the collisional term (relax-
ation time approximation) is often used:

where f0 is the equilibrium distribution.
The widely used Callaway approximation [6, 96]

has form

where fλ is the distribution function for a uniformly
drifting phonon gas, τN is the relaxation time of the N
process and τR is the relaxation time for the U process.

The existence of phonons with a wide spectrum
indicates the absence of a unified value of the phonon
mean free path that determines the heat transport
regime.

Ab initio calculations give different distributions
for different materials. For example, 80% of heat in
silicon are carried by phonons with a mean free path
from 0.05 to 8 μm, while 80% of heat in diamond are
carried by phonons with a mean free path from 0.3 to
2 μm [50]; more than 95% of heat in sapphire are car-

3 Thermal displacement was introduced by Helmholtz [184].
It satisfies condition  = T. This quantity was used by Green
and Naghdi [185, 186] as “scalar historical variable” ν =

dτ + ν0.

ν�

τ0 ( )
t
T

ν+ τ = − λ∇ + τ + ∇ν + τ( , ) [ ( , ) ( , )].q Tt T t Cc r tq r r

( )∂ ∂ ∂+ ∇ + =
∂ ∂ scatt

,f f ff
t dt

v F
P

( ) −∂ = −
τ

0

scatt
,f ff

dt

( ) λ− −∂ = − −
τ τ

0

scatt
,

N R

f f f ff
dt
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ried by phonons with a mean free path shorter than
1 μm [39].

2.1. The Guyer–Krumhansl Equation
Guyer and Krumhansl [191, 192] solved the linear-

ized Boltzmann equation, assuming that the normal
scattering rate is much higher than the rate of U pro-
cesses at low temperatures. They proposed a phenom-
enological relation between phonons and lattice vibra-
tions associated with lattice anharmonism.

When the phonon mean free path exceeds the sam-
ple size, the behavior of the phonon gas becomes sim-
ilar to the Knudsen flow or ballistic transport. These
authors determined the conditions in which a Poi-
seuille f low makes a significant contribution to heat
conduction.

The Poiseuille f low in a cylinder is escribed by
equation [114]

the  solution to which is q(r) =  A(R2  – r2), A =
–(λ∇T/(Λ2)).

The Guyer–Krumhansl equation is usually written
in the form

where β' and β'' are the Guyer–Krumhansl coeffi-
cients (in the case of a rarefied gas, these coefficients
are connected with the Callawey integral [22]), or

where Λ is the phonon mean free path.
The Guyer–Krumhansl equation can be obtained

in the extended nonequilibrium thermodynamics
under the assumption that nonlocal terms can be
included into the expression for the entropy f lux as [1]

where γ is a positive coefficient.
Recently, Calvo-Schwartzwalder et al. [193] used

the Guyer–Krumhansl equation for solving the 1D
Stefan problem.

2.2. Ballistic–Diffusion Model
The ballistic–diffusion model introduced by Chen

[194, 195] is based on the splitting of the distribution
function (as well as internal energy and heat f lux) into
two components:

which reflects the coexistence of two types of heat car-
riers:

Λ ∇ = λ2 2 Tq

∂τ + = −λ∇ + β Δ + β ∇ ∇
∂

' '' dot ,T c
t
q q q q

∂τ + = −λ∇ + Λ ∇ + ∇ ⋅ ∇
∂

2 2( 2 ),T
t
q q q q

= + γ ⋅ ∇ + ∇ ⋅( 2 ),s

T
qJ q q q q

= + = + = +, , ,b d b d b df f f e e e q q q
(i) ballistic phonons that are mainly scattered at the
boundaries;

(ii) diffusion phonons experiencing numerous
scattering events in the bulk of the system.

The relative role of these components is deter-
mined by the value of the Knudsen number and by the
system geometry [196].

Yang et al. [197] used the Boltzmann equation for
relative phonon intensity Iω = vω ωfD(ω)/(4π) (vω is
the group velocity of carriers, ω is the phonon fre-
quency, D(ω) is the phonon density of states per unit
volume, and Sω is the source term that can be deter-
mined, for example, by the electron–phonon scat-
tering)

The equations for the ballistic and diffusion com-
ponents can be written as

and

respectively.
Allen [198] analyzed a transition from the ballistic

to diffusion regime using computer simulation and the
version of the Boltzmann equation subjected to the
Fourier transformation. The evolution equations for
the mean population in the reciprocal space of pho-
non mode Q includes a number of terms (drift, scatter-
ing, and external terms)

where nQ is the local equilibrium Bose–Einstein dis-
tribution, ΦQ = NQ – nQ, and SQ, Q’ is the linearized
scattering operator.

Vazqurz et al. [36] and Lebon et al. [1] considered
the two-temperature version of the ballistic–diffusion
model. Vasquez et al. used the Guyer–Krumhansl
equation for describing the ballistic and diffusion heat
flows. Lebon et al. used the Guyer–Krumhansl equa-
tion only for the ballistic transport; the diffusion com-
ponent was described by the Cattaneo equation.

Pumarol et al. [95] reported the direct observation
of the ballasting and diffusion transport in graphene.
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ω ω ω
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2.3. Generalized Fourier–Hua Law
Hua et al. [199] developed the generalized Fourier

law, which holds from the ballistic to the diffusion
regime and is based on the Boltzmann equation for
modes in the relaxation time approximation (Bhat-
nagar–Gross–Krook model)

where gμ(x, t) = ωμ(fμ(x, t) – f0(T)) is the distribution
function for energy difference for a phonon in state
μ = (q, s); q is the phonon wavevector; s is the phonon
branch index; f0 is the Bose–Einstein distribution
function; g0(T) = ωμ f0(T) – f0(T0)) ≈ CμΔT; Cμ is the
specific heat depending on the mode; and  is the
energy supply rate per mode.

For solving this equation, the authors used the
Fourier transform in time and connected the tempera-
ture gradient with mode-dependent heat capacity x.

2.4. Phonon Hydrodynamics
Guo and Wang [200] obtained the macroscopic

equation of motion of a phonon gas based on the
Boltzmann equation for phonons,

where f = f(x, t, k) is the phonon distribution function
and vg = ∇kω is the group velocity of phonons.

Collisional term C( f ) includes the contributions
from the two main scattering processes: normal scat-
tering (N process) and scattering with a momentum
loss (R process).

Energy is conserved in any type of scattering pro-
cess, while quasi-momentum is conserved only in
normal scattering.

A simplified Boltzmann equation is based on the
application of the Callawey relaxation time model,
which presumes that the N and R processes occur
independently. At low temperatures, the N process
dominates; however, at ordinary temperatures, the N
process can be ignored, and the Boltzmann equation
takes form

where  is the equilibrium distribution function for
the R process.

In the phonon hydrodynamics model, the follow-
ing field variables are used:

phonon energy density

heat f lux

μ μ
μ μ μ

μ

∂ −
+ ⋅ = − +

∂ τ
�

0( , ) ( , , )
( , ) ,

g x t g g T t
g t Q

t
x

v x

�

�

�Q

∂ + =
∂

( ),g
f C f
t

v

−∂ + = −
∂ τ

eq

,R
g

R

f ff
t

v

eq
Rf

= ω � ,e fdk
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and heat f low f lux

The integration of the Boltzmann equation in the
space of wavevectors gives the balance equations for
the energy density,

and of heat f lux

These balance equations are the four-momentum
field equations for the photon Boltzmann equation4

To close the system of phonon transport equations,
the heat f low flux  must be defined in terms of four
main field variables (energy density and three heat f lux
components).

There are several approaches to the problem of clo-
sure in the kinetic theory:

(1) the Gilbert method;
(2) the Chapman–Enskog method;
(3) the Grad method of moments;
(4) “regular method of moments” (R13 method);
(5) method of invariant manifolds.
The authors used the perturbation method relative

to the four-moment phonon distribution function
obtained using the entropy maximum principle.

Thus, the problem was reduced to the maximiza-
tion of the following functional:

where β and γi are the Lagrangian multipliers.
Ultimately, the four-moment phonon distribution

function took form

Higher-order approximations for heat f low flux 
can be determined from the balance equation

and third-order tensor  is defined as

4 In [200],  is misprinted as a vector.

= ω � ,g fdq v k

= ω �ˆ .g gQ fdv v k
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t
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The following expansion in the small parameter
(Knudsen number) ε = Kn is used:

and the zeroth- and first-order terms are conserved,

Finally, the balance equation takes form

where Λ = νgτR is the mean free path.
This equation differs from the Guyer–Krumhansl

equation only in the numerical coefficient of the non-
local term. The authors emphasized that the analytic
structure of these equation is the same, but the heat
transport mechanisms underlying these equations are
different. The nonlocal term in the Guyer–Krum-
hansl equation reflects normal scattering of phonons
(this equation described heat transport at low tem-
peratures). The nonlocal term in the phonon hydrody-
namics equation is a consequence of spatial nonequi-
librium effects emerging due to scattering of phonon at
the boundaries or because of high temperature gradi-
ents.

Guo and Wang used the equations derived in the
phonon hydrodynamics for solving a number of prob-
lems, including

(i) phonon transport in the plane of a thin film;
(ii) phonon transport in a nanowire;
(iii) nonstationary 1D phonon transport across a

thin film;
(iv) high-frequency periodic heating of a semi-

infinite surface, and
(v) nonstationary heat transport in a thermal

grating.

2.5. Relaxon Model
Recently (2020), Simoncelli et al. [12] used the

evolution of relaxons for deriving a pair of equations
describing coupled collective lattice vibration in
dielectric crystals.

The concept of relaxons as a collective nonequilib-
rium excitation of a crystal lattice, which is a linear
combination of phonons, was introduced by Chepel-
lotti and Marzari [201]. Heat conduction can be
treated as the f low of a relaxon gas.

The authors proceeded from the linearized Boltz-
mann equation for a phonon in the form

= + ε +(0) (1) ...ij ij ijQ Q Q

∂= ν εδ + τ ν δ
∂

 ∂− τ ν + ∂ ∂ 

2 2

2

1 2
3 15

1 .
5

k
ij g ij R g ij

k

ji
R g

j i

qQ
x

qq
x x

∂  τ + = −λ∇ + Λ ∇ + ∇ ∇ ⋅
  ∂

2 21 1 ( ) ,
5 3R T

t
q q q q

μ
μ μ μμ μ

μ

∂
+ ∇ = − Ω Δ

∂  ' '
'

1 .
n

n n
t V

v

The summation is carried out over all possible pho-
non states μ (μ = (q, s), where q varies over the Brill-
ouin zone and s varies over phonon branches), vμ is the
phonon group velocity, V is the volume, Ωμμ' is the lin-
ear operator of phonon scattering, Δnμ = nμ –  is the
deviation of the phonon distribution function from the
equilibrium function, i.e., from the Bose–Einstein
distribution

where ωμ is the phonon frequency.
Since the Bose–Einstein distribution depends on

the spatial coordinates and time only in terms of tem-
perature, the equation can be written in the form

The solution to this equation in closed form is pos-
sible in the unified relaxation time approximation,
when the collision operator is simplified [201]:

The thermal conductivity in the harmonic approx-
imation for heat f lux

can be written as

where ( )SMA is the phonon mean free path compo-
nent in the j direction.

Thus, heat conduction is ensured by phonons car-
rying specific heat

moving with velocity νμ, and having mean free path

( )SMA prior to thermalization during scattering.
Cepellotti and Marzari emphasized that the defini-

tion of the phonon lifetime or mean free path cannot
be used without the assumption of the unified relax-
ation time because the nondiagonal terms of the scat-
tering operator introduce the coupling between pho-
nons, and the phonon thermalization cannot be
described by the equipotential relaxation.
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Operator Ω can be reduced to symmetric form
using the transformation

Since  is a real-valued positive matrix, it can be
reduced to diagonal form, and eigenvectors  and
eigenvalues 1/τα can be determined (α is the eigen-
value index):

Arbitrary quantity Δ  can be represented as a lin-

ear combination of eigenvectors :

The Boltzmann equation can be written in the basis
of eigenvectors θα:

Cepelloti and Marzari derived the following equa-
tion for the thermal conductivity:

These authors also demonstrated that the Mat-
thiessen rule that is widely used for estimating the
relaxation time in systems with different scattering
mechanisms overestimates the thermal conductivity.

Relaxons possess parity, and only odd relaxons
contribute to heat conduction. Even relaxons deter-
mine thermal viscosity [12]. Simoncelli et al. derived
two coupled equations for the temperature and drift
velocity.

3. THERMOMASS MODEL
The thermomass model is based on the old idea put

forth by Tolman [202]: heat carriers exhibit the mass–
energy duality and manifest energy properties in
energy conversion processes and mass properties in
transport processes [203].

The heat mass is defined in accordance with the
Einstein principle of equivalence of mass and energy
[204–206]:

μ μ
μμ μμ

μ μ

+
Ω = Ω

+
' '

' '
( 1)

,
( 1)

n n
n n

μ
μ

μ μ

Δ
Δ =

+
.

( 1)
n

n
n n

Ω
α
μθ

α
μμ μ

μ α
Ω = θ

τ '
'

1 1 .
V

μn
α
μθ

α
μ α μ

α
Δ = θ .n f

( )α

α α
αα α

α α

∂
 α + Δ +

∂

∂+ + ⋅ ∇ = −
∂ τ

2
B

'
'

0|

.

C T T
tk T

f ff
t

V

V

μ μ μ α α
μ α

−λ = ω ν Δ = λ
∇  �

1 .ij j i j

i

n CV
V T
TECHNICAL PHYSICS  Vol. 66  No. 1  2021
where E is the thermal energy, M0 is the rest mass,  is
the heat carrier velocity, c is the velocity of light in vac-
uum, and M is the relativistic mass.

If  ≪ c, this equation is simplified:

Here, Mk is an additional mass induced by the
kinetic energy. Thermomass (TM) Mh is the relativistic
mass of internal energy U:

The thermomass is extremely small (10–16 kg for 1 J
of heat) [203].

The thermomass density contained in a medium is
given by [207]

where ρCVT is the internal energy density.
A thermon is defined as a quasiparticle carrying

thermal energy.
The macroscopic drift velocity of the thermon gas

for a continuous medium is defined as

The total energy of the thermon gas in a medium is
the sum of the kinetic and potential energies [208].

where V is the total volume of the medium.

3.1. Equation of State (EOS) of the Thermon Gas
3.1.1. EOS of the thermon gas in an ideal gas. The

following two assumptions are made for the thermon
gas in an ideal gas:

(1) thermons are coupled with gas molecules and
are described by the Maxwell–Boltzmann distribu-
tion;

(2) Newtonian mechanics is applicable to the ther-
mon gas.

The pressure in a system of n particles of mass m,
which move randomly in the x direction with their
velocity, ux, is

with account of symmetry in the x, y, and z directions

(  =  =  = ) [206], we get
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Using the Maxwell–Boltzmann distribution func-
tion

we obtain

and, finally,

where R is the gas constant.
Thus, the pressure of the thermon gas in the ideal

gas is proportional to the square of temperature.
3.1.2. EOS for a thermon gas in dielectrics. Pho-

nons are thermons in dielectrics. The total energy of
lattice vibrations is

where Eh is the thermomass energy. The thermon gas
pressure is then

where γ is the Grüneisen constant.
The thermon gas pressure is proportional to the

square of temperature like in an ideal gas.
The thermon gas pressure in silicon at room tem-

perature is about 5 × 10–3 Pa [206].
3.1.3. EOS of a thermon gas in metals. In metals,

thermons are attached to electrons. The thermon gas
pressure is

where mh = ε/c2, ε being the internal energy including
the contributions from electrons and from the lattice,

and uh =  is the velocity of randomly moving par-

ticles. Therefore, the pressure is given by

The general expression for the thermon gas pres-
sure is

where
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is the Fermi–Dirac distribution function and

is the Sommerfeld function of the electron density of
states. Wang [206] derived the following expression for
the thermon gas pressure:

3.2. Equation of Motion of the Thermon Gas

One-dimensional equations of conservation of
mass and momentum have form

where S is the heat source and

where fh is the resistance.
The continuity equation of the thermon gas is in

fact the equation of energy conservation.
The flow of thermons in a solid can be treated as

the motion of a compressible f luid in a porous
medium; consequently, the Darcy law (K is the pene-
trability of the porous medium)

can be used for estimating thermomass resistance fh =
βhuh, β being the proportionality factor [209],

Effective resistance force fh is introduced instead of
the viscous term (μh∇2uh) to avoid [203]

(1) the determination of viscosity μh of composite
materials;

(2) the effects of interaction of thermons with the
lattice.

The flow of a thermon gas in a solid (phonon flow)
is induced by the pressure gradient (hence, by the gra-
dient of the squared temperature [2]).

The thermomass is too small to be observed in
standard conditions. However, under ultrafast heating
or at extremely large value of the heat f lux, the inertia
of the thermomass leads to effects in heat conduction,
which permit their detection.

ε =
 ε − ε + 
 

F

B

1( , )
exp 1

f T

k T

2
 ε = ε 
 π �

3/2
1/2

2
1 2( )

2
mZ

π=
2 2

2B
2

5 .
12

nkP T
c m

∂ρ ∂ρ+ =
∂ ∂ 2 ,h h hu S

t x c

∂ ∂ ∂ρ + ⋅ ρ + + =
∂ ∂ ∂

( ) ( ) 0;h h h h h h
Pu u u f

t x x

= − dPu K
dx

γρβ =
λ

2 3 2

2 .h
e C T

c

TECHNICAL PHYSICS  Vol. 66  No. 1  2021



HEAT CONDUCTION BEYOND THE FOURIER LAW 13
The law of conservation of the thermon gas
momentum can be written as the heat conduction
equation [206]

Wang [206] developed a wo-step version of the
thermomass theory for metals subjected to ultrafast
laser heating under the following assumptions:

(1) electrons absorb laser energy and transfer it to
the lattice;

(2) scattering at defects and grain boundaries is dis-
regarded;

(3) the electron–phonon interaction is described
by the coupling coefficient.

Analogously to the f low of a compressible f luid in
a porous medium, Brinkman’s correction μ∇2q,
which takes into account the additional resistance due
to the walls, can be introduced into the equation of
motion of the thermon gas. This correction is signifi-
cant only for large values of the Knudsen number [207].

The entropy production during the motion of the
thermon gas is ensured by dissipation of mechanical
energy,

where Eh is the mechanical energy of the thermon gas
and  is the f lux of Eh.

The total derivative of the entropy density can be
written as [205, 210]

where Js is the entropy f lux.

3.3. Heat Flux Trapping
The thermon gas is a compressible f luid, which

demonstrates effects typical of a compressible f luid
(e.g., air).

One of such effects is the behavior of a gas in a con-
vergent nozzle for the Mach number equal to unity.

The thermal Mach number is defined as

where the velocity of sound (e.g., in dielectrics) is Ch =
.

During the compressible air f low induced by a
pressure gradient, the velocity in a convergent channel
increases, while the pressure decreases in the direction
of the f low. The f lux trapping occurs when the Mach
number attains unity; in this case, a jump appears in
the pressure values.
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The drift velocity of the phonon gas induced by the
temperature gradient increases in the direction oppo-
site to the temperature gradient. The heat f lux trap-
ping occurs when the thermal Mach number attains
unity; in this case, the temperature experiences a
jump.

The effect of the heat f lux trapping was confirmed
in experiments on heat conduction in single-wall car-
bon tubes suspended between metal electrodes.

4. MESOSCOPIC EQUATIONS FOR MOMENTS
In the framework of the kinetic theory, Berga-

masco et al. [121] developed a number of moment
(two-moment and three-moment) equations by intro-
ducing the Knudsen number as the ratio of the mean
free path of heat carriers to the characteristic size of
the system. These authors also introduced the concept
of a “ghost” moment.

5. THERMODYNAMIC MODELS
Thermodynamic models of heat conduction are

derived from thermodynamic limitations following
from the second law of thermodynamics [211–218].

For example, Jou and Cimmelli [216] introduced
an additional new variable, i.e., second-order tensor

, and wrote the balance equation in the form

where τl is the relaxation time. Tensor  is assumed to
be symmetric and can be split as  = Q  + , where
scalar Q is one-third of the trace of  and  is the
deviator part of .

These authors derived the general equation includ-
ing the Cattaneo and Guyer–Krumhansl equations as
particular cases:

where μ, μ', and ξ are material coefficients and ∇tq
indicates the transposition of ∇q.

Kovacs and Van [213] also introduced a second-
order tensor as an intrinsic variable and proposed that
the entropy flux can be written as

where  is a second-order tensor and  is a third-order
tensor, which are known as current factors (Niiri fac-
tors).

Using the limitations following from the second
law of thermodynamics (nonnegative entropy produc-
tion) and excluding the intrinsic variable, the authors
derived the general defining relation for the heat f lux:

Q̂

τ + = −λ∇ + ∇ ⋅�

ˆ,l T Qq q

Q̂
Q̂ Î ˆ

sQ
Q̂ ˆ

sQ
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− λ + ξ ⋅ ∇ + ∇ + ∇∇ ⋅2 2

( ' )
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t
R

pT l

q q q q

q q q q

= ⋅ +ˆ ˆˆ : ,b B QJ q

b̂ B̂



14 ZHMAKIN
Choosing the material coefficients that can be set
at zero, we can obtain a number of familiar heat con-
duction models, such as

(i) Fourier model;
(ii) Cattaneo model;
(iii) ballistic–diffusion model; and
(iv) Guyer–Krumhansl model.
Rogolino et al. [218] chose as main variables the

specific internal energy (per unit volume), internal
energy, heat f lux, and the f lux of the heat f low. Pre-
suming the form of the corresponding balance equa-
tion, using entropy limitations and the Lagrange–Far-
kas multipliers, the authors obtained two versions of
the generalized heat conduction law:

(1) second-order equation in space and first-order
equation in time, disregarding nonlocal effects;

(2) fourth-order equation in space and second-
order equation in time, including nonlocal effects.

6. NONLOCAL MODELS WITH FRACTIONAL 
DERIVATIVES

6.1. Fractional Derivatives

There is no generally accepted definition of a frac-
tional derivative [219–222]. The most popular are the
Riemann–Liouville and Caputo definitions. Both
derivatives are based on the Riemann–Liouville frac-
tional integral that is defined for any λ > 0 as [223, 224]

Here, Γ(α) = (–α)uα – 1du is the Euler
gamma function.

This integral exists if f(t) is locally integrable and
behaves for t → 0 as O(t–ν), where ν < α.

(i) The Riemann—Liouville fractional derivative is
defined as [225]

(ii) The Caputo fractional derivative is defined
as [225]
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There exist a number of other definitions of frac-
tion derivatives apart from the Riemann—Liouville
and Caputo definitions (by Grünfeld–Letnikov,
Riesz, Weyl, Marchaud, Caputo–Fabrizio, Yang,
Chen, He, Jao, Qi–Jiang, and others), which are not
equivalent [226].

6.2. Differential Equations with Fractional Derivatives

Usually, a fractal medium cannot be treated as a
continuous medium. The noninteger-dimension
spaces [227] are required for describing a fractal
medium with the help of continual models [228].
Equations with fractional derivatives [229] (Abel and
Liouville were the first to use fractional calculus) are
nonlocal (i.e., can include memory effects and spatial
correlations) and can describe anomalous diffusion
(both subdiffusion and superdiffusion), as well as
anomalous heat conduction [230] (e.g., heat conduc-
tion in a porous medium is described by the superdif-
fusion model [231]).

The initial conditions for the Caputo fractional
derivative can be formulated in terms of initial condi-
tions in the integer derivatives. Zero initial conditions
for the Riemann–Liouville, Caputo, and Grünfeld–
Letnikov derivatives are the same [232].

6.3. Fourier Fractional Model

Deng and Ge [233] studied heat transport in a frac-
tal medium using the Helmholtz fractional equation

where 0 < α ≤ 1 and 0 < β ≤ 1.
He and Liu [234] used the fractional version of the

Fourier law

for studying heat transfer in the system of silk cocoons.
Beibalaev et al. [235, 236] used an analogous

approach for analyzing heat transport in a fractal
medium and for studying soil freezing.

He at al. [237] used the time-independent equation
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while Wang et al. [238] used the time-dependence
equation

for analyzing heat transport in the fractal model of
polar bear fur.

Meylanov and Shabanova [239] solved 1D prob-
lems with the fractional equation

Voller et al. [240] used the time-fractional model,
while Meylanov et al. [241] employed the model frac-
tional in time and space for solving the Stefan prob-
lem. Voller et al. considered both sharp and diffuse
boundaries between the liquid and solid phases.

Sirotsyuk et al. [242] used the time-fractional Fou-
rier equation for calculating heat transport in a hetero-
geneous semi-infinite beam.

6.4. Pennes Fractional Model
The generalization of Pennes equation (2) with the

help of the Caputo fractional derivative

(7)

was used by Darmor et al. [243] for analyzing hyper-
thermia and anomalous heat conduction in dermal tis-
sues under a constant and sinusoidal heating of the
surface [244, 245] and by Ezzat et al. [246] for calcu-
lating the nonstationary heat transport in skin under
instantaneous heating of the surface.

It was noted by Ferras et al. [247] that Eq. (7) is
incorrect as regards the dimension, and it is necessary
to either redefine the coefficients in the classical equa-
tion or introduce factor τ1 – α for obtained the “new”
thermal conductivity.

Singh et al. [248] employed the equation fractional
in time and space,

to analyze the temperature field in tissues during
hyperthermia.

6.5. Zingales Fractional Model
Zingales [249] (see also [250]) considered two

components of heat transfer in solids at rest:
(1) “close” heat transport described by the conven-

tional Fourier law;
(2) heat transfer between remote elementary volumes

located at points x and y, which is proportional to
(i) the product of interacting masses;

α α

α α
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(ii) temperature difference T(x) – T(y);
(iii) decreasing function of distance g(||x – y||).
Thus, this author proposed that function g

decreases as a power-law function of distance:

where dn( ) is the normalizing factor connected with
decreasing exponent α and with dimension n of the
topological space of the body.

Finally, the energy conservation equation can be
written in the form

where  is the Marchaud fractional derivative of
order α, which is defined as

6.6. Cattaneo and SPL Fractional Models
The fractional version of the Cattaneo equation is

sometimes called the Cattaneo–Vernotte “nonlocal”
equation, which reflects the properties of fractional
derivatives [251].

Liu et al. [252] used the Christov modification of
the Cattaneo model for developing the fractional
equation using the spatially fractional Riesz derivative.

The time-fractional SPL model of the biological
heat transfer was formulated in [253]:

(8)

Calculations show that the fractional SPL model
gives the same temperature distribution as the DPL
model [253].

The spatially fractional SPL model was formulated
by Kumar et al. [254] for the 1D case:

(9)

where

and for m – 1 < α < m,

where Γ(z) is the gamma function.
Jiang and Qi [255] derived the fractional model of

the heat wave, by modifying the Cattaneo relation
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where  is the modified Riemann–Liouville deriva-
tive of order α.

Qi et al. [256] studied laser heating by generalizing
the Cattaneo relation as

where  is the Caputo derivative of order p; factor τp

was introduced for correcting dimension.

Xu et al. proposed the fractional Cattaneo equation
using two Caputo derivatives of different orders:

Mishra and Rai [257] used the fractional SPL
model for analyzing heat transport in thin films.

Moroz and Maslovskaya [58] employed the spa-
tially fractional SPL model for simulating the heat
conduction in ferroelectrics (triglycine sulfate).

Christov [259] developed the spatially fractional
equation of nonstationary heat transport with a damp-
ing term described using the Caputo–Fabrizio deriva-
tive [260], which modifies the Caputo derivative

where M(α) is a normalizing function such that M(0) =
M(1) = 1.

Alkahtani and Atangana [261] considered the
numerical solution of this problem.

Tang et al. [262] (see also [263]) introduced for the
fractional heat transport the fractional derivative of
the singular kernel as a modification of the Riemann–
Liouville derivative

where (ν) is the normalizing function.

6.7. Fractional DPL Model

Ji [264, 265] used the following expression for the
time-fractional DPL model (  is the Caputo frac-
tional derivative):
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for studying heat transfer in thin films.
Xu et al. [266] studied biological heat transfer using

the equation with the Caputo derivatives of orders α
and β:

These authors replaced relaxation times τq and τT

of the DPL model by  and  to preserve the dimen-
sion.

Liu et al. [267] used the convective derivative intro-
duced by Christov [123] and the Caputo derivative of
order α to formulate model

6.8. Fractional TPL Model

Ahbarzadeh et al. generalized the defining relation
of the TPL model and retained terms up to the 2αFth
order for τq and up to the αF order for τT and  and
obtained

The fractional TPL model, like the ordinary TPL
model, is used for solving problems of thermoelasticity
[268, 269].

CONCLUSIONS

In this review, an attempt has been made to include
the entire variety of models intended for analysis of
heat transport beyond the Fourier model.

The most promising are apparently the thermody-
namic and fractional models; for studying heat trans-
port in dielectric, the relaxon model is most attractive.

Analysis of the literature shows that the DPL
model is more suitable for studying heat transport in
biological tissues.
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APPENDIX
SOME EXACT SOLUTIONS

Exact analytic solutions facilitate analysis of heat
transfer processes and serve as standards in developing
numerical methods.

Fan and Wang [270] published a comprehensive
review of exact solutions to biological heat transfer
problems including the Pennes equation, the heat
wave model, and the DPL model [270].

Sarkar et al. [271] considered the steady-state heat
transport in a multilayer dermic tissue using the
Pennes equation and the phase-lag models in the cases
with a preset temperature or heat f lux.

The Barletta and Zanchini [272] used the phase-lag
models to analyze heat transport in an infinitely wide
strip with a preset heat f lux with the help of the Catta-
neo equation. Such a problem was solved in cylindrical
coordinates by Saerdodin et al. [273].

Ahmadikia et al. [274, 275] and Kundu and
Dewanjee [276] used the heat wave model and the
Pennes equation for simulating the action of constant
and pulsed heating on a dermal tissue.

Al-Khairy et al. [277] analyzed laser (constant,
instantaneous, and exponential) action on a moving
semi-infinite medium using the Cattaneo model.

The DPL model was employed by Askarizadeh and
Ahmadikia [278, 279] and Lin [280] for studying non-
stationary heating of dermal issues.

Al-Khairy [281] solved the equations of the DPL
model for a homogeneous material using the Green
function; Dai and Nassar [282] used the initial form of
the DPL model without the Taylor expansion.

Kulish and Novozhilov [141] derived the integral
equation connecting temperature with its gradient
using the Laplace transform.

Zhang [148] used the method of “prepared solu-
tions” based on guessing of a possible solution and
determining the boundary and initial conditions.

Zhukovski [283] (see also [284]) obtained the exact
solution to the Guyer–Krumhansl equation using the
operator method and found that the solution may vio-
late the maximum principle in some regimes. How-
ever, this conclusion was not confirmed in the recent
article by Kovacs [285]. The initial and boundary con-
ditions corresponded to a laser experiment. The solu-
tion was sought in two intervals: 0 < t < τΔ and t > τΔ
(τΔ is the laser pulse duration).

The fractional models of Getinkaya and Kiymaz
[286] were based on the method of generalized differ-
ential transformation for solving diffusion equations
with the Caputo derivative.

Povstenko obtained exact solution for thermal con-
ductivity in two conjugate half-lines [287], a semi-
infinite composite material [288], and in a medium
with spherical inclusions [289].
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Junyi and Mingyu [290] obtained the solution to
the Stefan problem; Yang et al. [291] solved 1D non-
stationary problem for equations with a local frac-
tional derivative.

Kazemi and Erjaee [292] analyzed the fractional
diffusion equation.

Ghosh et al. [293] obtained the solution to the lin-
ear fractional equation with the Jumarie derivative in
terms of the Mittag–Leffler functions.
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