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Abstract—Basic concepts of the autowave model of development of a localized plastic f low of solids of differ-
ent natures are considered. It is shown that plastic deformation develops in a localized (at the macroscale
level) way throughout the process. The form of the observed localization patterns is related to stages of strain
hardening of the material. The patterns are projections of different modes of the localized plastic f low auto-
wave on the observation surface. An elastoplastic strain invariant is introduced, which is considered as the
main equation of the autowave plasticity model, and its physical nature is discussed.
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INTRODUCTION
The physical nature of plastic deformation of solids

has not been comprehensively studied; the solution of
this problem is hindered by difficulties related to the
consideration of nonlinearity and activity of the
deformed medium [1]. Nevertheless, certain progress
in plasticity physics has occurred in recent years; this
progress was entailed by the detection and confirma-
tion of the macroscale spatial–temporal character of
the solid plastic f low in all stages of the forming pro-
cess [2, 3]. These concepts originate from the study by
Seeger and Frank [4], where the development of local-
ized plastic deformation was interpreted as self-orga-
nization of the deformed medium; thus, the problem
of plasticity physics was brought into the range of
interests of synergetics. The definition of self-organi-
zation proposed by Haken [5] (“A system is referred to
as self-organizing if it acquires some spatial, time, or
functional structure without a specific external
effect”) was found convenient to be used in plasticity
physics. Finally, Nicolis and Prigogine [6] directly
noted that “the nature of plastic f low should be dis-
cussed within the theory of nonlinear dynamic sys-
tems.”

To date, in the physics of plasticity, two aspects of
research are relevant, differing in the scale of the stud-
ied objects, but operating with the concept of structure
formation. The first one is related to analysis of forma-
tion of dislocation substructures during plastic f low in
a small volume of the material [7]. It requires spatial
resolution at the level of individual dislocations with
their characteristic Burgers vector scale b ≈ 10–10 m.
The second aspect originating from [4–6] concerns
investigation of macroscopic (L ≈ 10–3–10–2 m) regu-
larities of localization of plastic f low in the entire sam-

ple volume. We developed this line of research in, e.g.,
[2, 3]. Phenomena studied within these approaches
differ significantly in their scales (L/b ≈ 107–108).

Now it is clear that all stages of the deformation
process are characterized by macroscopic localization
of plastic f low [2]. It manifests itself in spontaneous
stratification of the deformed material into correlated
deforming and nondeforming (at a given instant) vol-
umes. The presence of this correlation makes it possi-
ble to consider plastic f low as self-organization of the
deformed medium taking various forms.

In this study, we discuss the experimentally
revealed macroscopic regularities of spontaneous
nucleation and evolution of the strain localization at
different stages of the deformation process in tension
with a constant rate (active loading) and make an
attempt to establish a direct relationship between the
lattice characteristics and the regularities of localized
plastic f low and to explain the nature of this relation-
ship.

1. PATTERNS AND AUTOWAVES
OF LOCALIZED PLASTIC FLOW

1.1. Strain Localization. Patterns
The macroscopic spatial distributions of the local-

ized strain (localization patterns), which are observed
during plastic f low and evolving in time, are sponta-
neously generated during tension of samples with a
constant rate [2]. In the general sense, the popular
term “pattern” means “any sequence of phenomena in
time or any position of objects in space, which can be
distinguished from other sequences or other positions
or compared with them” [8]. In the case of plastic
strain, the localized plasticity pattern is a consistently
741



742 ZUEV, BARANNIKOVA

Fig. 1. Pattern of localized plasticity at deformation of a
Fe–3 wt % Si single crystal: (a) micrograph, (b) distribu-
tion of the plastic distortion tensor component, (c) half-
tone image, and (d) digital speckle photography image.
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evolving set of macroscopic zones of localized plas-
ticity. Plastic f low localization patterns were experi-
mentally found by us using speckle photography [2, 3];
their existence was later confirmed by other research-
ers using the methods of digital image correlation [9–11]
and IR imaging [12]. A typical example of a localiza-
tion pattern is shown in Fig. 1.

Systematization of the observations results showed
that, at plastic f low, the pattern configurations are
related to the stages of strain hardening, which can be
distinguished when analyzing the stress–strain curves
of plastic f low σ(ε). At least, the number of pattern
configurations coincides with the number of stages of
the plastic f low curve of a given material.

This regularity was noted for all investigated mate-
rials, irrespective of their composition, structure, and
plastic deformation mechanism [2]. Even rather large
variations in these characteristics induce only small
quantitative changes in localization patterns, barely
changing their forms. The localized plasticity patterns
are observed on free surfaces of strained samples;
however, the corresponding deformation phenomena
occur throughout the entire volume of the deformed
material.
1.2. Autowave Modes of Localized Plastic Flow

A hypothesis was suggested [13] based on the anal-
ysis of a set of pattern forms, according to which the
development of localized plastic deformation is an
autowave process [14]. Such processes describe mech-
anisms of structure formation in active media (i.e.,
media containing distributed energy sources in their
volume). The deformed medium can be considered as
active, because it contains volume-distributed con-
centrators of elastic stress serving as these sources. In
essence, the patterns are observed projections of auto-
wave modes of localized plastic f low arising in the vol-
ume of the deformed medium to the sample surface.
This suggestion is based on the analysis of their forms
and kinetics in different stages of deformation and
confirmed by observations of pattern evolution in
many deformed materials. The experimental tech-
nique used for observing the patterns yielded quantita-
tive characteristics of the localized plasticity auto-
waves. These characteristics generally include spatial
(λ = 2π/k) and temporal (T = 2π/ω) process periods
and velocity of plastic deformation zones Vaw = λ/T =
ω/k. Here, k and ω are the wave number and fre-
quency, respectively. The values of λ and T are mea-
sured using the “deformation zone position X–time t”
(X–t) diagrams [2], an example of which is shown in
Fig. 2. The possibility of obtaining information about
parameters k, L. B. Zuev and S. A. Barannikova, and
Vaw makes it possible to bring the discussion of plastic
flow localization phenomenon to the quantitative
level.

Hence, to gain insight into the nature of autowave
deformation, we consider the spatial–temporal trans-
formation of stress field σ(x, y, t) and plastic strain
field ε(x, y, t). It is based on interrelated elastic and
plastic displacements of particles of the medium u;
notably, the stress transformation causes strain,
whereas a change in the strain induces transformation
of the stress field. The process rates are limited by elas-
tic-wave velocity Vt for the elastic field and localiza-
tion autowave velocity Vaw for the plastic strain field.

At a small deviation of the deformed system from
equilibrium, primary (p) displacement velocities 
are proportional to the gradients of plastic and elastic
strains, i.e.,  ≈ Dεε∇εpl and  ≈ Dσσ∇εel. The
cross effects must also be taken into account by intro-
ducing additional (ad) velocities  ≈ Dεσ∇εpl and

 ≈ Dσε∇εel. Now, we find for total velocities  =

 +  and  =  +  that

With allowance for the relationship between the
elastic and plastic strains, the following matrix can be
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AUTOWAVE PLASTICITY 743

Fig. 2. X–t strain diagrams of single crystals of high-nitro-

gen manganese stainless steel with the extension axis ori-

ented along the [ ] axis. 
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formed using the coefficients of this system of equa-
tions [15]:

(3)

the elements of this matrix obviously have a dimension
of m2 s–1. Here, diagonal elements Dεε and Dσσ charac-
terize the main f luxes of displacement vectors, while
off-diagonal elements Dεσ and Dσε correspond to the
cross effects.

Equations (1) and (2) are similar to the first Fick

law for diffusion  ~ D∇ε. Afterwards, after passage to

the second Fick law in the form of  ~ Dε'', one should
take into account that the Kolmogorov–Petrovskii–

Piskunov equation [14, 16]  = Φ(x) + Dx'' is generally
used to describe autowave processes, which is
obtained by adding nonlinear function Φ(x) to the
right-hand side of the second Fick equation.

The general description of autowave generation in
active media is traditionally constructed based on the
consideration of competition of antagonistic factors:
activating (autocatalytic) and inhibiting (damping)
[14]. During plastic f low, the process activator is plas-
tic strain ε and the inhibitor is stress σ [2]. Therefore,
in accordance with [16], the activator and inhibitor
change rates can be written as, respectively,

With allowance for the dimension and physical
meaning, transport coefficients Dεε and Dσσ in differ-

ential autowave equations (4) and (5) can be identified
with the diagonal components of matrix (3). The
right-hand sides of Eqs. (4) and (5) include the hydro-
dynamic and diffusion components. The former is
presented in these equations by nonlinear N-shaped
functions f(ε, σ) and g(σ, ε), describing the strain and
stress change rates during a unit relaxation event, and
is related to the displacement of the deformation front
along the sample at relaxation of local stress concen-
trators. The latter component is determined by diffu-

sion-like terms Dεε∂
2ε/∂x2 and Dσσ∂2/∂x2 and initiates

the nucleation of the plastic deformation zone at mac-
roscopic distance ~λ from the existing front due to
relaxation of a concentrator in this region (the so-
called throw of deformation).

1.3. The Nature of Plastic Flow Localization Autowaves
Autowaves in active nonlinear media form various

modes the type of which is mainly determined by the
actual strain hardening law. In almost all cases, the
autowave is a set of local plastic f low zones developing
in a correlated way, and its generation is caused by the
throw effect. Indeed, according to the Taylor–Orowan

equation  ≈ bρmdVdisl [17], the condition of constancy

of strain rate  = const set by a testing machine is sat-

(4)

(5)
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isfied at ρmdVdisl = const, i.e., at sufficient mobile dis-

location density ρmd and dislocation velocity Vdisl. If

this requirement is violated because of a decrease in
the density of mobile dislocations at strain hardening
or the drop in their velocity with a decrease in the
effective stress exerted on a dislocation from σ to σ ~

Gb  [17], the condition  = const should be pro-
vided by an additional contribution from diffusion-
like term Dεεε''. This contribution arises during gener-

ation of a new localized strain zone at distance ~λ
from the initial one (i.e., during formation of a local-
ized plastic f low autowave).

2. ANALYSIS OF COEFFICIENT MATRIX (3)

2.1. Diagonal Elements
It can be suggested from physical considerations

that coefficients Dεε and Dσσ in Eqs. (4) and (5) are

equivalent to diagonal elements of matrix (3). The for-
mer is related to density of mobile dislocations ρmd,

while the latter is determined by the stress field. Then,
by analyzing dimensions, we obtain

(6)

and

(7)

where F is the sample tension force during the test and
ρ0 is the density of the medium. One might suggest
that, by analogy with [14], the variety of autowave
modes of the localized plastic f low and, accordingly,
observed localized strain patterns depends on the ratio
of coefficients Dεε and Dσσ in Eqs. (4) and (5). There-

ρd ε�

−

εε
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fore, possible versions of the ratio of these coefficients
should first be qualitatively considered.

(i) Dσσ = 0, Dεε ≠ 0. Nullification of the second

term in Eq. (5) reduces the role of the stress as a factor
slowing down the development of plastic f low. This
corresponds to the case of strain without hardening
and, apparently, is consistent with the situation where
a unit plastic f low front (Luders front) moves along
the sample with a constant velocity [18]. The dynam-
ics of events in this case is determined by relaxation
events at the front of this band (in fact, by only the first
terms on the right-hand sides of Eqs. (4) and (5)). In
terms of the autowave process theory, this corresponds
to a switching autowave in a bistable medium. At its
front, the deformed material passes from the elastic to
plastically deformed state at σ = const. The medium is
bistable in this case [14] because the moving Luders
front separates regions of the material with signifi-
cantly different densities of mobile dislocations, sepa-
rating, actually, two states with different strains.

(ii) Dσσ ≈ Dεε. Equality of transport coefficients

corresponds to the case of synchronous propagation of
plastic and elastic phenomena in the deformed
medium, when the elastic and plastic strains follow
each other. In this case, the phase of the arising auto-
wave is constant, i.e., ωt – kx = const. This situation is
consistent with the existence of a phase autowave that
is characteristic of easy glide and linear strain harden-
ing stages when σsinε. In these stages, as is shown in
Fig. 2, one can observe movement of a group of equi-
distantly arranged localization zones along the sample
with a constant velocity. It is known [14] that phase
autowaves arise in systems consisting of self-oscillating
elements during incomplete synchronization. A fun-
damental possibility of the existence of self-oscillating
modes in dislocation ensembles was established in
[19]. In these modes, the same volumes of the material
can be multiply excited with a time interval deter-
mined by the microscopic properties of the medium.
Phase autowaves have typical wave characteristics:
wavelength, oscillation frequency, and propagation
velocity.

(iii) Dσσ ≫ Dεε. At this ratio of the transport coeffi-

cients, the damping factor plays a key role in the for-
mation of the deformation structure. Rapidly propa-
gating elastic waves generate a standing elastic wave in
the deformed sample, at the antinodes of which plastic
strain is localized. This corresponds to the occurrence
of a stationary dissipative structure in the stage of par-

abolic hardening when σsin  [16], and a system of
equidistant immobile zones of localized strain arises in
the sample.

(iv) Dσσ ≪ Dεε. When passing to the final stage of

the deformation process, the role of elastic stress
becomes less important. This situation can be consid-
ered as generation of the “mode with sharpening” [20]
leading to the formation of the only strain zone, i.e., to
macroscopic localization of plastic f low and forma-

ε

tion of the fracture neck. The mode of collapse of the
localized plastic f low autowave [21] is implemented in
this case; this collapse begins as a result of the matched
movement of plasticity zones and ends with viscous
fracture of the sample.

2.2. Correspondence Rule
Comparison of the data on the localization pat-

terns with strain hardening stages showed that a spe-
cific pattern (projection of a certain autowave mode) is
formed in each stage of plastic f low. This observation
(valid for all materials investigated to date) suggested
that there is a relationship, on the one hand, between
the patterns and stages of strain hardening and, on the
other hand, between the strain hardening stages and
corresponding autowave modes.

According to the above-considered cases, one can
state the following, in correspondence with the
accepted terminology [14]:

(i) Stage of the yield plateau corresponds to the
switching autowave.

(ii) Stage of linear strain hardening corresponds to
the phase autowave.

(iii) Stage of parabolic strain hardening corre-
sponds to the stationary dissipative structure.

(iv) Stage of prefracture corresponds to the auto-
wave process collapse.

Therefore, the multistage process of plastic f low
can be considered as a systematic change of autowave
localization modes. This change is implemented in the
following order: switching autowave → phase auto-
wave → stationary dissipative structure → autowave
collapse.

An important feature of the localized plasticity
autowave evolution in the deformed medium consists
in the following. It is known [14] that experimental
investigation of different autowave modes in chemical
or biological systems requires designing specific gen-
erators for each process. The generators differ by type
or kinetics of chemical reactions therein, chemical
composition, temperature regime, sizes, and some
other characteristics. In contrast, during deformation,
autowave modes are generated under tension with a
constant rate (i.e., with much less experimental diffi-
culties). From this point of view, the deformed sample
is a universal generator of autowave processes, which is
convenient for both their simulation and experimental
analysis [22].

2.3. Off-Diagonal Elements and Elastioplastic Invariant
Let us now consider off-diagonal elements Dεσ and

Dσε of transport-coefficient matrix (5), which are

responsible for the cross-linking bond between stress
and strain during plastic f low. In this case, according
to the Onsager kinetic coefficient symmetry principle
[15], these elements are equal, i.e., Dεσ ≈ Dσε. With
TECHNICAL PHYSICS  Vol. 65  No. 5  2020



AUTOWAVE PLASTICITY 745
allowance for the dimension of elements, we can sug-
gest that λVaw ≡ Dεσ and χVt ≡ Dσε and pass to equality

λVaw ≈ χVt, where χ is the interplanar spacing and Vt is

the propagation velocity of transverse ultrasonic oscil-
lations. An experimental check of this suggestion
yielded an important result. It was found that the fol-
lowing ratio is valid for different materials that exhibit
a stage of linear strain hardening during plastic f low:

(8)

Equation (8) referred to as the elastoplastic strain
invariant [2] quantitatively relates the elastic-wave
characteristics (χ and Vt) with the characteristics of

plastic f low localization autowaves (λ and Vaw), com-

bining the elastic (εel ≪ 1) and plastic (εpl ≈ 1) strains.

To specify the meaning of invariant (8), we take
into account that χ and λ ≫ χ in Eq. (8) are spatial
scales of the elastic and plastic strain fields, while
velocities Vt and Vaw ≪ Vt determine the kinetics of

their transformation processes. In this case, Eq. (8)
written in form

(9)

reduces invariant (8) to the ratio of the scale (λ/χ ≫ 1)
and kinetic (Vt/Vaw ≫ 1) factors, which can now be
considered as thermodynamic probabilities [15, 23].
The first one characterizes the number of possible
zones of nucleation of the localized plastic strain auto-
wave, while the second probability determines the
choice of the autowave velocity from the range of its
possible values (0 ≤ Vaw ≤ Vt) in the deformed system.

Then, Eq. (9) is related to changes in the entropy
during the formation of localized plastic f low auto-
waves. In view of the additivity of the entropy, we write
its total change as a sum of the scale and kinetic con-
tributions:

(10)

Condition ΔS < 0 indicates a decrease in the
entropy during the formation of plastic f low localiza-
tion autowaves [23]. To satisfy this condition, at least
one term in Eq. (10) must be negative.

Using the Boltzmann formula, we write the scale
contribution to the entropy as

(11)

where kB is the Boltzmann constant. On the assump-
tion (as was noted above) that the kinetic contribution
to entropy is negative, we have

(12)

The opposite signs of parameters ΔSscale > 0 and

ΔSkin < 0 in Eqs. (11) and (12) indicate the difference

λ ≈
χ
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in the contributions from the scale and kinetic factors
to the character of development of the localized plastic
deformation and directly to the formation of localized
plastic f low autowaves. It follows from Eqs. (10)–(12)
that

(13)

and, accordingly,

(14)

Finally, we have

(15)

In this case, the total decrease in entropy during the
formation of a localized plasticity autowave is ΔS =
kBln(1/2) ≈ –0.7kB.

Note that elastoplastic strain invariant (8) is the
main equation of the developed autowave mechanics
of plasticity [2, 3]. It entails a number of consequences
[24] describing the main regularities of development
of the localized plastic f low.

3. STATISTICAL ANALYSIS OF THE VALUES 
OF THE STRAIN INVARIANT

The evident importance of invariant relation (8)
stimulates considerations of its generality and charac-
ter of distribution of its experimental values. Hence,
the focus of this study is on the need to investigate as
many plastic materials as possible in order to ensure
the universality of the data. These materials and the
characteristics of autowave processes obtained for
them are listed in Tables 1–3; it can be seen that the
invariant was determined for the following cases:

(i) Linear strain hardening and easy glide in
metals [2].

(ii) Phase transformation strain in intermetallic
compound NiTi [25].

(iii) Compressive strain in alkali halide crystals
(KCl, NaCl, and LiF) [26].

(iv) Compressive strain in rocks [27].

(v) Creep in polycrystalline aluminum [28].

(vi) Deformations due to the motion of individual
dislocations in Zn, CsI, NaCl, KCl, and LiF single
crystals [29–32] (in this case, the mean free path of
dislocations was used instead of the localized strain
autowave length).

Thus, single-crystal and polycrystalline materials
deforming by slip, twinning (γ-Fe, marble), phase
transformation (NiTi), and grain-boundary processes
(sandstone) were considered. The stress–strain curves
σ(ε) of all the investigated materials include portions,
in which phase localized plastic f low autowave were
recorded.

λ − = Δ <
χ B

aw

ln ln / 0tV S k
V

λ λ χ= = = Δ
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aw
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aw
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Table 1. Comparison of the χVt and λVaw values for metals

107 m2/s
Stage of linear strain hardening

Cu Zn Al Zr Ti V Nb α-Fe γ-Fe Ni Co Mo

λVaw 3.6 3.7 7.9 3.7 2.5 2.8 1.8 2.55 2.2 2.1 3.0 1.2

χVt 4.8 11.9 7.5 11.9 7.9 6.2 5.3 4.7 6.5 6.0 6.0 7.4

λVaw/χVt 0.75 0.3 1.1 0.3 0.3 0.45 0.33 0.54 0.34 0.35 0.5 0.2

107 m2/s Stage of linear strain hardening Stage of easy glide

Sn Mg Cd In Pb Ta Hf α-Fe γ-Fe Cu Zn Ni Sn

λVaw 2.4 9.9 0.9 2.6 3.2 1.1 1.0 7.4 2.9 1.9 1.0 1.3 3.3

χVt 5.3 15.8 3.5 2.2 2.0 4.7 4.2 6.5 6.0 4.7 5.0 6.0 4.9

λVaw/χVt 0.65 0.63 0.2 1.2 1.6 0.2 0.24 1.1 0.49 0.4 0.2 0.2 0.67
For 38 investigated materials, particular values of
the λVaw/χVt ratio were established, its mean value

λVaw/χVt and dispersion σ2 were found, and the

mean square error of the mean result ±  was cal-
culated [33]. As a result of these procedures, it was
found that

(16)

The distribution law of the experimental sample of

 values is important for understanding the nature of
invariant relation (8). As a hypothesis, it is assumed

that the  values are distributed according to the nor-
mal law, i.e., they do not correlate to any material
characteristic. To check the hypothesis, variational

series  <  <  < … <  < … <  <  was
constructed using the data from Tables 1–3 [33]. Its
terms are arguments for searching for numerical values
of the normal distribution quantiles –∞ < Q < ∞ cor-
responding to i/(n + 1) values. The distribution is con-

sidered as normal if Q is linear with respect to .

As can be seen in Fig. 3a, the linear character of

dependence Q( ) is violated for indium and lead (  =

0.96 and  = 1.3). To estimate the possibility of
assigning these values to gross errors and exclude them
from further calculations, we applied statistical analy-
sis using the criteria of [33] and

σ2
/n

=
λ λχ= =   = ±
χ

aw
38

aw

ˆ 0.48 0.04.
/

n
t t

V Z
V V V

Ẑ

Ẑ

1Ẑ 2Ẑ 3Ẑ ˆ
iZ −1

ˆ
nZ =38

ˆ
nZ

Ẑ

Ẑ InẐ

PbẐ
Table 2. Comparison of the χVt and λVaw values for alkali
halide crystals and rocks

107 m2/s KCl NaCl LiF Marble
Sandsto

ne

λVaw 3.0 3.1 4.3 1.75 0.6

χVt 7.0 7.5 8.8 3.7 1.5

λVaw/χVt 0.43 0.4 0.5 0.5 0.4
(17)

where  = 0.96 and  = 1.3 are the maximum val-
ues for the sample under study. The possibility of
excluding these data from analysis is confirmed by
nonfulfilment of the inequality νn < νmax. It follows

from the reference tables [33] that νn > νmax = 3.259 for

lead, so that the value  = 1.3 can be excluded from
the sample as is shown in Fig. 3b.

After excluding the gross error of  = 1.3, the new

mean invariant value is  n = 37 = 0.45 ± 0.04 at the

correlation coefficient between parameters Q and  of
~0.98 ≈ 1. Apparently, with allowance for the accuracy
attained in the experiments, it should be assumed that

 n = 38 ≈  n = 37 ≈   ≈ . An analysis confirmed

that changes in the elastoplastic invariant value in the

range of 0.2 ≤  ≤ 1.3 are related only to the experi-
mental errors in measuring λ and Vaw. This means that

the elastoplastic strain invariant can be applied for
describing processes of plastic f low in materials,
regardless of their nature and plasticity microscopic
mechanisms.

4. AUTOWAVE MODEL OF PLASTIC FLOW

The developed model of nucleation and evolution
of localized plastic f low is based on invariant (8),
which indirectly indicates the important role of acous-
tic properties (phonon subsystem) of the crystal in the
formation of plastic f low localization autowave pat-
terns. The possible reason is based on the fact that only
dislocations moving between the local barriers, for
which Vd ≠ 0, contribute to the macroscopic plastic

strain rate  ≈ bρmdVdisl [16]. In this case, their motion

  −ν = =
σ
  −ν = =

σ

In

2

Pb

2

ˆ ˆ| |
1.92

ˆ ˆ| |
and 3.28,

n

n

Z Z

Z Z

InẐ PbẐ

PbẐ

PbẐ
Ẑ

Ẑ

Ẑ Ẑ Ẑ 1

2

Ẑ

ε�
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Fig. 3. Dependences Q( ) plotted (a) for all data and

(b) after excluding the gross error for lead. The correlation

coefficient between the Q and  values is ~0.98: (h) met-
als (linear strain hardening stage), (n) metals (easy glide
stage), (e) alkali halide crystals, (+) mean free paths of

dislocations, (,) rocks, and (s) titanium nickelide.
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is over-barrier and controlled by the interaction with
viscous phonon and electron gases [34]. Their proper-
ties determine the plastic f low dynamics, including
that at the macroscale (autowave) level.

However, the phonon subsystem in the developed
model plays a more important role in the description
of the evolution of localized plastic f low of solids. The
deformation process including elementary relaxation
events is accompanied by two effects occurring in the
phonon subsystem of the deformed crystal. The first
one is acoustic emission, i.e., generation of elastic
waves during relaxation events of deformation. The
second one is an acoustoplastic effect consisting in the
initiation of plastic shears under ultrasonic pulses
applied to the deformed system. Thus, if an elemen-
tary relaxation event generates an acoustic pulse, the
latter can in turn initiate the development of a new
shear in a different crystal region. Both effects have
been sufficiently investigated independently of each
other; however, the sense of the developed model con-
sists in matching of these mechanisms.

The developed approach is based on the concept of
spontaneous stratification of self-organizing systems
into information and dynamic subsystems [21]. The
choice of these subsystems for the case of strain is
TECHNICAL PHYSICS  Vol. 65  No. 5  2020

Table 3. Comparison of the χVt and lVdisl values for mean
free paths of individual dislocations

107 m2/s NaCl LiF CsI KCl Zn

lVdisl 4.1 4.1 1.9 4.1 1.8

χVt 7.3 8.6 4.0 6.8 4.0

lVdisl/χVt 0.56 0.47 0.47 0.6 0.45
determined by its mechanisms. In an active deformed
medium with a set of elastic-stress concentrators, the
first subsystem can be related to acoustic emission
pulses at shears, while the second one to the shears
themselves. Thus, the concentrator elastic field decays
at relaxation initiates in turn new shears. The multiple
repetitions of these events form a localized plasticity
pattern and a corresponding autowave mode. There-
fore, the following scenario of plastic f low evolution
appears real. Relaxation of the stress concentrator
generates an acoustic emission pulse. Its energy
absorbed by another concentrator induces a new
shear, at which a new acoustic pulse is emitted. After-
wards, these events are repeated.

The plausibility of the model proposed is proven by
comparing waiting time τ of a thermally activated
event of shear relaxation [35] under only stress σ

(18)

with similar time under the action of an acoustic pulse
with elastic strain amplitude εac

(19)

For estimations from formulas (18) and (19), it is

assumed that fD ≈ 1013 Hz, activation enthalpy is U0 –

γσ ≈ 0.5 eV, kBT ≈ 0.025 eV, and the application of an

acoustic pulse reduces its value by γεacE ≈ 0.1 eV. Even

with allowance for the evident roughness of the calcu-
lation, the difference between times τ1 and τ2 ≪ τ1

confirms the validity of the considered mechanism.
The estimation of the correlation length for localized
strain patterns is also possible; it coincides with the
localized plastic f low autowave length. Indeed, Vtτ2 ≈

5 mm ≈ λ, whereas τ1 ≈ 100 mm ≫ λ, a value com-

parable to the sample size.

CONCLUSIONS

The point of view on the process of plastic f low,
developed in recent years, relates this phenomenon
with macroscopic regularities of the strain localiza-
tion. The performed experiments and interpretation of
their results show that this macroscopic consideration
of the deformed solid makes it possible to apply an
apparatus of the fields of modern science such as syn-
ergetics and physics of nonlinear media when discuss-
ing the plasticity phenomenon.

As follows from the results reported, the plastic
flow is implemented as evolution of autowave pro-
cesses, which begins at the yield stress and ends at the
sample fracture. It is accompanied by a systematic
change in macroscopic localization forms (i.e., differ-
ent autowave modes of localized plastic f low are suc-
cessively generated, the type of which is determined by
the actual strain hardening law.

− − − γστ = ≈ × 
 

1 50
1 D

B

exp 5 10 s
Uf

k T

− − − γ σ + ετ = ≈ × 
 

1 70 ac
2 D

B

( )
exp 9 10 s.

U Ef
k T

vt
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Based on the developed autowave concepts, we
constructed a model of localized plasticity, according
to which the evolution of plastic f low is a result of joint
action of relaxation dislocation shears and emission–
absorption of acoustic emission pulses controlling
these shear processes.

Characteristics of the elastic and plastic strains of
the deformed medium are related by a simple relation
referred to as the elastoplastic strain invariant. The
invariant can be considered as the main equation of
autowave plasticity mechanics.
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