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Abstract—The amorphous-crystalline transition in Fe84B16 alloys prepared by melt spinning and high-energy
ball milling was studied. Time-resolved X-ray diffraction showed that the kinetics of transition into a crystal-
line state depends on the method of preparing a metastable alloy. In amorphous Fe84B16 alloy prepared by
melt spinning, crystallization proceeded within a time period of below 1 s and was accompanied by the for-
mation of eutectic α-Fe–Fe3B. At temperatures above 600°C, metastable phase Fe3B was found to transform
into Fe2B and α-Fe. In the high-energy ball milling produced alloy, structural changes were accomplished in
4–8 s and the transition into a state with a perfect crystalline structure was caused by the growth of nanocrys-
tallites formed during processing.
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INTRODUCTION
Iron-based amorphous alloys (AAs) showing high

magnetic permeability, saturation induction, and low
coercive force are used to manufacture magnetic
screens, magnetic filters, separators, sensors, etc. [1].
The main method of their preparation is high-speed
cooling of the melt using a rotating drum or disk (spin-
ning), which requires high-tech equipment. AAs can be
produced by high-energy ball milling (HEBM) [2–5].
To obtain materials with necessary magnetic proper-
ties, the AAs should be partially crystallized in optimal
annealing conditions [6]. Crystallization occurring
upon heating of AAs changes their physicomechanical
properties. In this case, there is a problem of thermal
stability. The crystallization of tapes of an amorphous
Fe84B16 alloy prepared by spinning was studied in [7–
10]. It was shown that amorphous-crystalline transi-
tion during slow heating occurs in two stages. In the
first stage, the α-Fe phase is formed; in the second
one, metastable phase Fe3B precipitates, which
decomposes into α-Fe and Fe2B with increasing tem-
perature. The study of amorphous tapes [11] showed
that wave-like crystallization can be initiated by a coil
heated at T0 = 300°C. The amorphous tapes with sim-
ilar composition (Fe80B20) undergo no crystallization
upon heating at a rate of 20 K/min to 420°C or during
isothermal annealing at 380°C for 1 h [12]. However,
there are no studies on the processes occurring during
heating of tapes produced by rolling of AA powders.
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This study is aimed at studying the transition of amor-
phous Fe84B16 alloy produced by HEBM into a crys-
talline state by time-resolved dynamic X-ray diffrac-
tion analysis with special emphasis on crystallization
of amorphous tapes prepared by melt spinning.

EXPERIMENTAL

Iron (OSCh 6-2 grade, TU 6-09-3000-78) and
amorphous boron (B-99V grade, TU 1-92-154-90)
powders were used as the starting components to pro-
duce Fe84B16 alloy by HEBM. The powders were
mixed in a Fe : B ratio of 84 : 16 at % in a porcelain
mortar for 5–10 min. The components were weighed
using an VM2202M-II electronic laboratory balance
with an accuracy of at least 0.01 g.

HEBM of powder mixtures 84Fe : 16B was carried
out in an Activator-2S laboratory planetary ball mill at
a planetary disk rotation speed of 700 rpm and a drum
rotation speed of 1400 rpm. The pre-mixed 84Fe : 16B
charge and steel balls 7–8 mm in diameter were placed
into the activator drums in a weight ratio of 20 : 1
(360 g balls per 18 g mixture). The mill drums were
hermetically closed using caps with valves for pumping
and inflowing gas. The drums were evacuated to a
residual pressure of 0.01 Pa and then filled with argon
up to 4 atm. The 84Fe : 16B mixture was subjected to
high energy ball milling for up to 120 min. The pro-
08
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Table 1. α-Fe cell parameters

Sample α-Fe cell 
parameter, Å

Crystalline 
phases

Fe, after HEBM 2.8664 α-Fe

84Fe–16B after HEBM 2.8683 α-Fe

84Fe–16B after HEBM 
and heating to 460°C

2.8674 α-Fe

Amorphous 84Fe16B alloy 
after heating at 460°C

2.8681 α-Fe, Fe2B

Amorphous 84Fe16B alloy 
after heating at 8000°C

2.8681 α-Fe, Fe2B

Fe, PDF card no. 06-0696 2.8664 α-Fe

Fig. 1. XRD patterns of (a) Fe powder after mechanical
treatment, (b) 84Fe : 16B mixture after mechanical treat-
ment, and of (c) 84Fe16B AA prepared by spinning.
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duced powders were rolled into tapes 250–300 μm
thick and 12 mm wide.

The sequence of structural and phase transforma-
tions was studied by time-resolved X-ray diffraction
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Fig. 2. SEM images of the 84Fe : 16B powder m
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(TRXRD) analysis, which makes it possible in situ to
detect changes in the structural and phase states of the
material upon heating [13]. The idea of TRXRD is
sequence recording of X-ray diffraction patterns with
short exposure time during heating. The TRXRD
studies were performed using monochromatic copper
radiation (λ = 0.154187 nm) in the Bragg–Brentano
reflection geometry. The foil made of 84Fe16B AA
prepared by melt spinning with a thickness of 30 μm
[14] and the rolled tape fabricated from HEBM-pro-
duced 84Fe : 16B powder mixture with a thickness of
200 μm were studied. A part of foil or band 15 × 10 mm
in size was placed in a hermetic chamber equipped
with a resistance furnace and beryllium windows. The
monochromatic beam was directed onto the center of
the sample surface at an angle of 20°; the illuminated
area was 2 × 10 mm in size. XRD patterns were
recorded continuously during heating. The exposure
time of an XRD pattern for foil and tape was 1 and 2 s,
respectively. Several series consisting of 64 XRD pat-
ixture (a) before and (b) after HEBM for 80 min.
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Fig. 3. TRXRD pattern taken during heating of HEBM-
produced 84Fe : 16B powder mixture.
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terns were obtained during heating and cooling of the
sample. The temperature was measured using a VR
5/20 thermocouple 100 μm in diameter the junction of
which was in contact with the surface of the sample.
The heating rate was 250–280 deg/min. The experi-
ments were carried out in a helium atmosphere under
an excess pressure of 1 atm.
Fig. 4. Initial part of TRXRD pattern taken during hea
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X-ray diffraction (XRD) analysis of the material
before and after crystallization was carried out using a
DRON-3M diffractometer with FeKα radiation in the
step-by-step scanning mode and in the range of angles
2θ = 30°–100° with a step of 0.02° and holding for 2 s.
The cell parameters were determined by the internal
standard method using Si standard (SRM 640D). The
fine structure parameters were estimated by the sec-
ond moment method using the Size & Strain software
package (NPP Burevestnik) and LaB6 (SRM 660A)
was used as a standard reference material.

RESULTS AND DISCUSSION

XRD analysis showed that the 84Fe : 16B powder
mixture after mechanical treatment is not amorphous
(Fig. 1b). The XRD pattern contains strongly broadened
lines of bcc α-Fe phase (PDF card no. 06-0696), which
are typical of (110) and (200) for Kα series and (110) for
Kβ series. The size of α-Fe coherent domains was
9 nm. Figure 2 shows SEM images of the powder mix-
ture before and after HEBM. HEBM is seen to yield
composite particles 2–10 μm in size. The α-Fe phase
cell parameter a = 2.8683 Å is higher than the known
value of the Fe cell parameter in the ICDD powder
database (see Table 1).

In order to explain the reasons of change in the α-Fe
cell size, the ball milling of pure α-Fe powder was car-
ried out in the same conditions of mechanical treat-
ment. In this case, the broadening of α diffraction
TECHNICAL PHYSICS  Vol. 64  No. 12  2019

ting of HEBM-produced 84Fe : 16B powder mixture.
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Fig. 5. XRD patterns of (a) HEBM-produced 84Fe : 16B
after heating at 820°C, and (b) 84Fe16B AA after heating
at 460°C.
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Fig. 6. TRXRD pattern taken during heating of amorphous
84Fe16B alloy.
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lines is substantially less (Fig. 1a); cell parameter a =
2.8664 Å corresponds to the database value. There-
fore, high-energy processing does not lead to a change
in the unit cell size of α-Fe. Thus, structural changes
are influenced by the second component (boron). The
equilibrium Fe–B phase diagram shows that the solu-
bility of boron in α-Fe is insignificant and is no more
than 0.06 at % at room temperature [15]. It is known
that mechanical activation favors a significant shift of
concentration boundaries of solid solutions beyond the
equilibrium state [16]. Thus, HEBM of the 84Fe : 16B
mixture leads to the formation of metastable solid
solution of boron in α-Fe and, accordingly, to an
increase in the α-Fe cell parameter (see Table 1). The
observed difference in the broadening of α-Fe diffrac-
tion lines (Figs. 1a, 1b) also indicates the effect of
boron on the structure of the material. The issue of
concentration of boron in the α-Fe solid solution,
which was formed as a result of treatment of the
84Fe : 16B mixture, requires further studies. Com-
plete dissolution of 16 at % B in α-Fe is unlikely. It can
be assumed that the obtained composite particles con-
tain nanosized crystalline regions of the α-Fe [B] solid
solution separated by regions of amorphous boron.
TECHNICAL PHYSICS  Vol. 64  No. 12  2019
The Fe84B16 alloy prepared by melt spinning is
amorphous. This was confirmed by a diffuse line pre-
sented in the XRD pattern (Fig. 1c). Fe84B16 alloy was
widely studied in [7–10, 17, 18]. Its crystallization
during slow heating (~20 deg/min) was found to pro-
ceed in several stages. At the first stage, the equilibrium
bulk centered α-Fe phase precipitates. Then, the meta-
stable tetragonal Fe3B phase is formed. At higher tem-
peratures, the Fe3B phase converts to stable crystalline
α-Fe and Fe2B phases. Figure 3 shows the TRXRD pat-
tern and heating thermogram of HEBM-produced 84Fe :
16B powder. A sequence of 192 XRD patterns acquired
every 2 s is presented in a two-dimensional field with
coordinates (angle, time).

Figure 4 shows that only crystalline α-Fe phase is
formed upon heating of the 84Fe : 16B mixture.
An increase in the intensity and a narrowing of α-Fe
lines broadened as a result of HEBM start at 250–
300°C within 4–6 s. An increase in the degree of crys-
tallinity of α-Fe is accompanied by the appearance of
a weakly expressed exothermic peak in the thermo-
gram. The presence of thermal peak is associated with
the release of energy during the transition into an equi-
librium state. Further heating at a temperature of more
than about 700°C favors the α-Fe → γ-Fe phase tran-
sition (Fig. 3). At 820°C, there are lines belonging to
the face-centered γ-Fe phase in the diffraction field.
The reverse transition upon cooling occurs at the same
temperature (about 700°C). For comparison, the evo-
lution of the structure of pure α-Fe powder fabricated
by HEBM was studied upon heating to 850°C. It was
found that the α-Fe phase is stable and does not
undergo structural transformations in this tempera-
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Fig. 7. Initial part of TRXRD pattern taken during heating of amorphous 84Fe16B alloy.
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ture range. Indeed, the polymorphic α-Fe ↔ γ-Fe
transformation takes place at 912°C. Obviously, a sig-
nificant decrease in the transition temperature is asso-
ciated with dissolution of boron, which is a stabilizer of
the austenitic phase. The XRD pattern after cooling is
seen in Fig. 5a to contain only α-Fe phase. The cell
parameter of the α-Fe phase after heating is less than
that of the α-Fe phase after HEBM, however, it
remained above the known values of the PDF 2 data-
base (see Table 1). Thus, the results confirm the for-
mation of solid solution of boron in α-Fe during
Fig. 8. Microstructure of amorphous 84Fe16B alloy after
heating at 460°C.
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HEBM of the 84Fe : 16B mixture. Upon heating, the
boron concentration in α-Fe decreases as indicted by
a decrease in the cell size. No crystalline boride phases
of iron are formed at given experimental temperature
and time parameters.

Figure 6 shows the TRXRD pattern taken upon
heating of amorphous Fe84B16 alloy and consisting of
192 diffraction patterns acquired every 1 s.

The amorphous-crystalline transition of the Fe84B16
alloy prepared by spinning occurs within a time period
of below 1 s. At the heating rate of 250–280 deg/min,
α-Fe and Fe3B phases are crystallized simultaneously
(Fig. 7). This is indicated by the thermal effect in the
thermogram. The Fe84B16 alloy has a eutectic compo-
sition and is crystallized by the eutectic mechanism,
forming colonies 50–100 nm in size (Fig. 8). The XRD
pattern of the alloy after heating to 460°C contains two
phases: α-Fe and Fe3B (Fig. 5b).

The cell parameter of α-Fe in the sample heated to
460°C, a = 2.8683 Å exceeds the corresponding value
for pure α-Fe (a = 2.8664 Å, see Table 1), which indi-
cates the formation of a solid solution of boron in
α-Fe. It should be noted that the sizes of α-Fe cells
produced by HEBM, α-Fe with В, and α-Fe precipi-
tating during crystallization of Fe84B16 AA, are close to
each other. Above 600°C, the signals from metastable
phase Fe3B disappear, while the lines of the Fe2B
phase come into being (PDF card no. 36-1332). Fur-
ther heating leads to α-Fe → γ-Fe phase transition
(Fig. 6). The onset of polymorphic transformation is
around about 700°C just as in the case of heating of
HEBM-produced powder. During cooling, the
TECHNICAL PHYSICS  Vol. 64  No. 12  2019
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reverse transition γ-Fe → α-Fe is observed. The cell
parameter of α-Fe in the Fe84B16 alloy after heating to
800°C is less than that in the alloy heated to 460°C,
however, it remained above the cell parameter of pure
α-Fe (see Table 1).

The evolution of the structure and phase composi-
tion of amorphous and HEBM-produced Fe84B16
alloys during heating differs, which is caused by differ-
ent methods of synthesis. Heating of amorphous
Fe84B16 alloy allows obtaining a eutectic α-Fe–Fe3B
nanostructure. In case of heating of an HEBM-pro-
duced 84Fe : 16B powder mixture, there are no iron
boride phases; a gradual transition of α-Fe nanostructure
in the equilibrium state with perfect crystalline structure
occurs. Composite particles contain nanoscale ferrite
regions (about 9 nm), which are nuclei for crystalline
α-Fe grains. The onset of crystallization (250–300°C)
is close to 0.2–0.3Tmelt, at which diffusion-controlled
normal grain growth in metals starts. The crystalliza-
tion is diffusion-controlled and accomplished in 4–8 s.
The crystallization of amorphous Fe84B16 alloy is
explosive in its character and is associated with simul-
taneous formation of nanoscale crystalline regions in
the entire bulk of the material, i.e., with a high rate of
formation of nuclei in the amorphous matrix.

CONCLUSIONS

Time-resolved X-ray diffraction method was
applied to exploring amorphous-crystalline transition
in Fe84B16 alloys prepared by spinning and high-energy
ball milling. It is shown that the kinetics of transition
into a crystalline state is determined by the method of
preparation of metastable alloy.

HEBM of the 84Fe : 16B powder mixture yields
composite particles consisting of nanoscale crystalline
regions of α-Fe [B] solid solution and regions of
amorphous boron. Heating of this powder mixture
favors no formation of iron boride phases but is
accompanied by a gradual transition of a nanostruc-
ture of α-Fe in the equilibrium state with perfect crys-
talline structure. The transition into crystalline state is
induced by diffusion and is caused by the growth of
nanocrystallites formed during HEBM as the nuclei
for crystal α-Fe grains.

Upon heating of amorphous Fe84B16 alloy prepared
by melt spinning, a eutectic α-Fe–Fe3B nanostruc-
ture is formed. The crystallization of Fe84B16 AA is
explosive in its character and is associated with simul-
taneous formation of nanoscale crystalline regions
over the entire bulk of the material, i.e., with a high
rate of formation of nuclei in amorphous matrix.
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