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Abstract—Capillary oscillations of an uncharged spheroid droplet of nonviscous conducting uncompressible
liquid in the presence of uniform electric field are analyzed in the first order of smallness with respect to the
ratio of the oscillation amplitude to a linear size of the droplet and in the second order of smallness with
respect to the squared ratio of the linear size to the radiation wavelength. It is shown that the electric quadru-
pole moment of the droplet is time-dependent due to surface oscillations, which lead to the emission of quad-
rupole electromagnetic waves. A mathematical model of the quadrupole electromagnetic radiation of an
uncharged droplet that oscillates in the presence of electrostatic field is constructed, and the radiation inten-
sity and frequency are estimated.
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INTRODUCTION
Emission of electromagnetic waves has been

demonstrated for an oscillating charged droplet of a
perfectly conducting uncompressible perfect liquid
[1]. Indeed, intrinsic charge of such a droplet is dis-
tributed over the surface, charge particles exhibit
accelerated motion in the course of oscillations, and,
hence, electromagnetic radiation is generated in
accordance with the classical physical principles (see,
for example, [2]). The calculation method of [1] is
reduced to derivation of a dispersion relation for an
oscillating droplet of perfect liquid for the wave zone
of the electric field of the droplet that has complex
solutions. The imaginary part of the frequency corre-
sponds to damping that is impossible for perfect liq-
uid. Therefore, the emission of accelerated charges
serves as the source of the energy loss.

In accordance with the electromagnetic theory [3],
the radiation of a system of accelerated charges con-
sists of s sum of dipole, quadrupole, and magnetic
dipole contributions. Electromagnetic radiation is
divided into multipole components using small
parameter δ, which represents squared ratio of a linear
size of the droplet to the radiation wavelength. The
radiation intensities decrease in a row: dipole, quadru-
pole, and magnetic dipole components. The calcula-
tions of an oscillating charged droplet in the first order
of smallness with respect to parameter ε [1] (ε is the
ratio of the oscillation amplitude to a linear size of the
droplet) yield only quadrupole component. The
dipole radiation of an oscillating charged droplet is
obtained in the calculations of the second order of

smallness with respect to parameter ε. However, the
intensity of the dipole radiation appears to be greater
than the intensity of the quadrupole radiation by 14–
15 orders of magnitude.

Different results are obtained for an uncharged
droplet of perfectly conducting uncompressible non-
viscous liquid in the presence of uniform electrostatic
field: dipole radiation is observed in the first order of
smallness with respect to parameters δ and ε [5], and
quadrupole radiation is observed in the second order
of smallness with respect to parameter δ and the first
order with respect to parameter ε.

In this work, we calculate the intensity of quadru-
pole radiation of an uncharged droplet of perfect
uncompressible conducting liquid that oscillates in the
presence of uniform electrostatic field.

PHYSICAL FORMULATION
OF THE PROBLEM

We consider quadrupole electromagnetic radiation
generated by an uncharged droplet of perfect uncom-
pressible liquid that oscillates in the presence of uni-
form electrostatic field E0. The mass density of the liq-
uid is ρ, and the coefficient of surface tension is σ. The
droplet is located in vacuum, and its volume is the vol-
ume of a sphere with radius R. Capillary wave motion
is always excited on the surface of the droplet due to
thermal motion of water molecules. The amplitude of
such motion is relatively small (about ∝ , where
k is the Boltzmann constant and T is the absolute tem-
perature [6]). At temperatures of about room tempera-
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ture such an amplitude is less than one angstrom for all
liquids. 

On the surface of a freely falling droplet that is
affected by external forces (e.g., a force related to the
air f low), the amplitudes of single modes of the oscil-
lating droplet may amount to several tens of percents
of the radius [7, 8]. In this case, the capillary oscilla-
tions of the surface of the droplet that is charged by
induced charge lead to emission of electromagnetic
waves.

In accordance with the general theory of electromag-
netic waves, the intensity of the quadrupole radiation of a
system of accelerated charges is calculated as [3]

(1)

where tensor of quadrupole moment Dαβ is given by

(2)

Here, γ(r, t) is the volume charge density, δαβ is the
Kronecker delta, xα(t) and xβ(t) are the coordinates of
radius vector r(t) in Cartesian coordinates (x, y, z) for
a point that is located in droplet volume V.

External electrostatic field leads to perturbation of
the equilibrium spherical shape of the droplet. In the
linear approximation with respect to stationary defor-
mation, we assume spheroid shape [9–13] with
squared eccentricity e2

The calculations are performed in spherical coor-
dinates (r, θ, ϕ) with the origin at the center of mass of
the droplet using dimensionless variables: R = ρ = σ = 1.
The remaining parameters are represented in fractions
of characteristic values: 

[E0] = R–1/2σ1/2, [t] = R3/2ρ1/2σ–1/2, 
[V] = R–1/2ρ–1/2σ1/2, [r] = R, and [P] = R–1σ. 

We mathematically formulate the problem of the
quadrupole radiation of a spheroid uncharged droplet
of nonviscous uncompressible conducting liquid that
oscillates in the presence of external electrostatic field.

MATHEMATICAL FORMULATION
OF THE PROBLEM

We assume that, at initial moment t = 0, equilib-
rium spheroid droplet r(θ) is perturbed and virtual
axisymmetric perturbation ξ(θ, t) with fixed ampli-
tude ε is significantly less that the radius of the droplet.
Based on the smallness and axisymmetric character of
the initial perturbation, we assume that the droplet
shape is axisymmetric at any time moment. We also
assume that the equation that describes the surface of
the droplet in the spherical coordinates with the origin

αβ
α β=

 ∂=  ∂ 
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at the center of mass is written in terms of dimension-
less variables as

We consider potential motion of the liquid and
assume that the field of velocities for the liquid in the
droplet V(r, t) = ∇ψ(r, t) is fully determined by velocity
potential ψ(r, t) [14]. The amplitude of the velocity
field for the liquid has the order of smallness that is
identical to the order smallness of the oscillation
amplitudes on the surface of the droplet: ψ(r, t) ~ ξ(θ,
t) ~ ε. In the vicinity of the droplet, the electric field is
described using electric potential Φ(r, t).

The mathematical problem of the motion of liquid
in the uncharged droplet that oscillates in the presence
of external electrostatic field is written as [1, 15]

(3)

where hj are the coefficients that determine the partial
contribution of the jth oscillation mode to the total
initial perturbation, Ξ is the set of numbers of the ini-
tially excited oscillation modes, Pj(μ) is the Legendre
polynomial of the jth order, j is the integer, and μ ≡
cosθ.

For closing of the above system of equations, we
use general physical principles and formulate addi-
tional natural conditions for constancy of the volume,
immobility of the center of mass, and zero charge of
the droplet:

(4)

Here, we use the following notation: ∞S(t), elec-
trostatic potential that is constant over the surface; P =

P0 – , hydrodynamic pressure; P0, constant internal

pressure in the equilibrium state; PE = (∇Φ)2/8π, elec-
tric field pressure; Pσ = divn(r, t), capillary pressure;
n(r, t), unit vector that is orthogonal to the perturbed
surface [16] given by
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(5)

The desired quantities are expanded in terms of the
smallness of dimensionless oscillation amplitude ε [17]:

(6)

where Φ(0)(r, θ) is the electric potential in the vicinity
of the equilibrium position of the uncharged spheroid in
the presence of external electric field and Φ(1)(r, θ, t) is
the term of the first order of smallness added to the
electric potential due to perturbation of the surface.
The superscript shows the order of smallness with
respect to parameter ε.

Substituting expansions (6) in expressions (3) and
(4), we select problems of the zero and first order with
respect to parameter ε.

Potential Φ(0)(r, θ) in the linear approximation with
respect to e2 can be obtained using a transition from
the known expression of [18] for the electric potential
of a prolate conducting ellipsoid in the presence of a
uniform external field in the spheroidal coordinates to
the spherical coordinates or with the aid of a direct
solution of the electrostatic problem of the zero order
of smallness with respect to parameter ε in the spheri-
cal coordinates using the perturbation method:

Accurate to the terms of the first order with respect
to small parameters ε and e2, the shape of the per-
turbed surface r(θ, t) is described using the equation

(7)

where amplitude coefficients Mj(t) are represented as

In the absence of the external electric field, the sec-
ond term of about e2 vanishes and perturbation ampli-
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tude Mj(t) is determined by the term with frequency ωj:
Mj(t) = hjcos(ωjt).

The term added to the electric potential in the
vicinity of the perturbed spheroid is written as

SURFACE CHARGE DENSITY

Surface charge density v(r, t) that is distributed over
the perturbed surface of the axisymmetric surface of a
perfectly conducting droplet is determined using the
known formula

(8)

where r(θ, t) is given by expression (7).
We use expression (8) for the components of the

electric potential and the expression for the normal
vector orthogonal to the perturbed surface of the
spheroid in the presence of the external field

(9)

to obtain the surface charge density on the perturbed
droplet r(θ, t) accurate to the terms on the order of
~E0e2ε and ~ ε:

Here, functions ξ(θ, t) and Φ(1)(r, t) are the func-
tions of the first order of smallness with respect to
parameter ε. In expression (9), er and eθ are the unit
vectors of the spherical coordinate system.

Taking into account function ξ(θ, t) from expres-
sion (7) and the solution for additional electric poten-
tial Φ(1)(r, t), we represent the surface charge density as
an expansion in terms of the Legendre polynomials:
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(10)

Numerical factors k1–k6 that depend on only sub-
script j are presented in the Appendix.

CALCULATION OF THE QUADRUPOLE 
MOMENTS

To obtain the intensity of the quadrupole electro-
magnetic radiation of the conducting droplet, we cal-
culate tensor of quadrupole moment Dαβ(t) that enters
expression (1). Substituting squared radius vector r2 =
x2 + y2 + z2 in formula (2), we obtain a general expres-
sion for the tensor of quadrupole moment in the Car-
tesian coordinates [3, 18]:

Here, r = r(r, t) is the equation for the surface of the
droplet, v(r, t) is the surface charge density, r is the
radius vector of a point on the surface of the droplet,
δ(r – r(θ, t)) is the Dirac delta function [19], and δαβ is
the Kronecker delta.

For further calculation of the quadrupole
moments, we use the approach of [20].The expression
for components of quadrupole moments is repre-
sented in the spherical coordinates (r, θ, ϕ) with the
origin at the center of the droplet. The presence of
delta function in the expressions for the components
of the tensor of quadrupole moment makes it possible
to transform integration over the volume into integra-
tion over the surface of the droplet that is perturbed
due to capillary wave motion. Thus, we obtain
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Here, quantities r(θ, t), (θ, t), and n(r, t) are given
by expressions (7), (10), and (9), respectively.

The droplet is axisymmetric, so that equation of
the perturbed surface r(θ, t) is independent on the ϕ
coordinate. After integration of expressions (11) with
respect to angle ϕ, we obtain

(12)

We substitute surface charge density (10) and nor-
mal vector (9) on perturbed surface of the droplet r(θ, t)
in nonzero tensor components to obtain the corre-
sponding analytical expressions in terms of amplitude
coefficients Mj(t):

(13)

Numerical coefficients p1–p6, which depend only
on subscript j, can be found in the Appendix.

We take into account orthogonality of the Legen-
dre polynomials, substitute explicit expression for
Mj(t), and make a transition to dimensional variables:
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Fig. 1. Plot of the intensity of the quadrupole electromag-
netic radiation of a single uncharged droplet that oscillates
in the presence of electrostatic field vs. radius of an equal-
size spherical droplet for ε = 0.1, σ = 73 dyn/cm, ρ =
1 g/cm3, and E0 = 50 V/cm (about 2 × 104E0cr and 7 ×
10–4E0cr at R = 3 and 30 μm, respectively).
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Note that the quadrupole moment of the
uncharged droplet in the presence of the external field
differs from zero only for the perturbed surface of the
droplet (the quadrupole moment of an equilibrium
uncharged spheroid in the presence of external elec-
trostatic field is zero) and is determined by the third
and fifth oscillation modes in the calculations accurate
to the squared eccentricity.

We determine the maximum sum of squares of the
third derivative with respect to time of the tensor com-
ponents of the quadrupole moment:

(14)

Substituting expression (14) in formula (1), we find
the intensity of the quadrupole electromagnetic radia-
tion of the uncharged droplet that oscillates in the
presence of electrostatic field:

(15)

Based on expression (15), we numerically estimate
the quadrupole moment of the quadrupole noise radio
radiation of convective clouds.

First, note that a possible source of electromag-
netic radiation is related to the oscillations of low
modes of small droplets the concentration of which in
the cloud is about 103 cm–3 [21]. Characteristic sizes of
such droplets range from to 3 to 30 μm. Maximum
concentration in the cloud corresponds to size interval
of 3–7 μm. The surface oscillations of the droplets are
primarily determined by microphysical intracloud
processes: coagulation with smaller particles, changes
of the aggregate state, splitting into smaller droplets
due to collisions or electrostatic instability, and elec-
tric and hydrodynamic interaction with the neighbor-
ing droplets. Experiments under natural conditions
show that the oscillation amplitude of cloud droplets
may amount to several tens of percents of the droplet
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size [7, 8]. Thus, we estimate the radiation intensity on
the assumption that the ratio of the oscillation ampli-
tude to the droplet radius ξ(θ, t)/R = ε is 0.1.

We use expression (15) to calculate the quadrupole
radiation of a single uncharged droplet that oscillates
in the presence of the uniform electrostatic field. For
the numerical estimations we use h3 = h5 = 0.5, ε = 0.1,
σ = 73 dyn/cm, ρ = 1 g/cm3, R = 30 μm, and E0 =
50 V/cm [22] (about 2 × 10–4E0cr and ~7 × 10–4E0cr at
R = 3 and 30 μm, respectively, where E0cr is the critical
field). Then, expression (14) yields I ~ 6 × 10–46 erg/cm.
For a droplet with a radius of R = 8 μm, we obtain an
intensity of I ~ 2 × 10–45 erg/ cm. For a radius of R =
3 μm, the intensity is I ~ 6 × 10–45 erg/cm (Fig. 1).

The estimated results and Fig. 1 show that an
increase in the droplet radius by an order of magnitude
(from 3 to 30 μm) leads to a decrease in the intensity
by an order of magnitude.

Figure 2 shows the characteristics of radiation ver-
sus the external electric field. It is seen that an increase
in the electric field causes a rapid increase in the radi-
ation intensity: an increase in the field by a factor of 3
leads to an increase in the radiation intensity by an order
of magnitude in accordance with expression (15).

In comparison with the intensity of the dipole elec-
tromagnetic radiation of the uncharged droplet that
oscillates in the presence of electrostatic field [5], the
intensity of the quadrupole electromagnetic radiation
is less by 14–15 orders of magnitude.

Figure 3 presents the dependences of the dimen-
sionless axisymmetric component D33(t) of the quad-
rupole moment calculated with the aid of expression (13)
for h3 = h5 = 0.5 (curve 1) and dimensionless projec-
tion along the symmetry axis of the dipole moment
TECHNICAL PHYSICS  Vol. 64  No. 3  2019
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Fig. 2. Plot of the intensity of electromagnetic radiation of
a single uncharged droplet that oscillates in the presence of
electrostatic field vs. external electric field that is calcu-
lated for the parameters of Fig. 1 at R = 30 μm.
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Fig. 3. Plots of the projections of the dimensionless electric
dipole and quadrupole moments of an uncharged droplet
that oscillates in the presence of the uniform electrostatic
field vs. dimensionless time that are calculated for ε = 0.1
and E0 = 50 V/cm: (1) quadrupole moment D33(t) calcu-
lated at h3 = h5 = 0.5 and (2) dipole moment d3(t) calcu-
lated at j = 2 and h2 = 1.
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by analogy with [5] for j = 2 and h2 = 1 for the spheroid
water droplet in the presence of the uniform electro-
static field E0 = 50 V/cm using numerical coefficients
Gi that depend only on the mode number (cumber-
some expressions for the coefficients are not pre-
sented).
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dimensions but it is expedient to represent both quan-
tities on a single plot for clearness.

It is seen that the frequency of variations in the
quadrupole moment with time is approximately four
times greater than the frequency of variations in the
dipole moment. This circumstance can be used for
experimental identification of the multipole compo-
nents of electromagnetic radiation of a water droplet in
the presence of external uniform electrostatic field.

CONCLUSIONS
We have estimated the intensity of the quadrupole

electromagnetic radiation of an uncharged droplet
that oscillates in the presence of electrostatic field in
the first order of smallness with respect to the ratio of
the oscillation amplitude to the linear size of the drop-
let and in the second order of smallness with respect to
the ratio of the linear size of the droplet to the radia-
tion wavelength. It has been shown that the intensity of
the quadrupole radiation is less than the intensity of the
dipole radiation of the same droplet by 14–15 orders of
magnitude and the frequency of the quadrupole radi-
ation is several times higher than the frequency of the
dipole radiation.
APPENDIX
Coefficients k1–k6 and p1–p6 in expressions (10) and (13) are given by the following expressions:
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