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Abstract—We consider the autowave mechanism of evolution of a localized plastic deformation of crystalline
solids of different origins. It is found that localization of the plastic f low is determined by the relation between
elastic and plastic phenomena in deforming materials. It is shown that the main parameter of deformation
processes is the elastic–plastic deformation invariant, viz., a dimensionless quantity connecting quantita-
tively the parameters of elastic waves and self-sustained waves (autowaves) of localized plastic deformation.
The correctness of this statement is verified for metals, alkali-halide crystals, and rocks. The physical origin
of the invariant is explained on the basis of thermodynamic considerations.
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INTRODUCTION
Plastic deformation of solids is a complex physical

phenomenon the evolution of which depends on the
crystal lattice and crystal structure defects. The pro-
cess of plastic f low is usually described by the depen-
dence σ(ε) of the deforming stress on the strain. It is
important that at all its stages from the beginning of
plastic f low (yield stress) to fracture (ultimate
strength), this process is accompanied by plastic strain
localization [1].

The model of evolution of localized plastic strain
proposed in [1] presumes that self-organization of the
defect structure [2] occurs in the form of autowaves of
a localized plastic f low [1, 3], which appear in the
deforming medium as a result of interaction of elastic
waves and relaxation events of breaking of elastic stress
concentrators. Each relaxation event contributes to
the overall plastic deformation and generates new
stress concentrators. The autowave pattern of local-
ized plasticity distribution regularly changes in accor-
dance with the stage nature of the σ(ε) curve so that
the deformation process can be treated as a natural
evolution of localized plasticity autowaves [1].

Therefore, autowaves (localized plasticity) and
wave (elastic) deformation phenomena coexist in a
plastically deforming medium. The former are charac-
terized by wavelength λ of the localized plasticity auto-
wave and velocity Vaw of its propagation, while the lat-
ter are determined by the interplanar distance χ in the
crystal lattice of the tested material and the velocity Vt
of propagation of transverse elastic waves.

It was noted in earlier experiments with a number
of metals [1, 4, 5] that dimensionless ratio λVaw/χVt

formed by these four characteristics is the same for all
cases of straining of different metals at the stages of
linear strain-hardening when σ ~ ε. This suggested
that ratio λVaw/χVt is invariant in general. This study
aims at the verification of this regularity not only for
metals, but also for other materials with a linear law
hardening. It is also important to clarify the origin of
this relation using general thermodynamic concepts.

1. EXPERIMENTAL DATA
The quantitative data on the localized plasticity

patterns were estimated experimentally for linear
stages of the processes at which the deforming stresses
and strains are connected by a linear relation. In these
cases, a phase localized plasticity autowave corre-
sponding to the condition of the constancy of phase
2π(t/T – x/λ) = const is observed, where T is the
period of oscillations in the wave, x is the coordinate,
and t is the running time. The localized plasticity pat-
tern formed in such cases is stable and can be observed
relatively easily [1].

For estimating ratio λVaw/χVt characterizing vari-
ous materials, the range of metals under investigation
was extended. In addition, we studied the localization
of plastic deformation in alkali-halide crystals (KCl,
NaCl, and LiF) and rocks such as sandstone (SiO2)
and marble (CaCO2). The method for observing the
patterns of a localized plastic f low in deforming mate-
rials, which was based on speckle photography, was
described in detail earlier [1] and will not be discussed
here. For illustrating the potentialities of this method,
Fig. 1 shows a typical pattern of local plasticity distri-
bution for sequential stages of easy slip and linear
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Fig. 1. Strain distribution over a sample of Fe–12 wt %Mn
alloy (a) at the easy slip state and (b) at the linear strain-
hardening stage.
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Fig. 2. X–t diagram for Garfield steel single crystal, plotted
for the case shown in Fig. 1.
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strain-hardening during tension with a constant rate for a
single crystal sample of alloy Fe–12 wt %Mn (γ–Fe).

The quantitative characteristics λ and Vaw required
for analyzing the data on the evolution of localized
plasticity were determined from the processing of the
so-called X–t diagrams proposed in [1] for such pur-
poses and shown in Fig. 2. It can be seen from the fig-
ure that the values of autowave wavelength λ and
period T can be determined from the vertical and hor-
izontal sections of families of the X(t) curves. Charac-
teristics λ and Vaw = λ/T of localized plasticity auto-
waves were determined for linear strain-hardening of
metals, easily slip in metal single crystals, compression
of rock samples, and the phase-transformation strain-
ing of the NiTi single crystal.
Table 1. Comparison of quantities χVt and λVaw for metals

×107 m2/s
Linear s

Cu Zn Al Zr Ti V

λVaw 3.6 3.7 7.9 3.7 2.5 2.8

χVt 4.8 11.9 7.5 11.9 7.9 6.2
λVaw 0.75 0.3 1.1 0.3 0.3 0.45

×107 m2/s
Linear strain hardening stage

Sn Mg Cd In Pb Ta

λVaw 2.4 9.9 0.9 2.6 3.2 1.1
χVt 5.3 15.8 3.5 2.2 2.0 4.7
λVaw/χVt 0.65 0.63 0.2 1.2 1.6 0.2
Let us analyze the data obtained in these experi-
ments. The values of products λVaw for 18 tested metals
are given in Table 1. It can be seen that the results differ
insignificantly and the mean value of the product of these
quantities is 〈λVaw〉lwh = (2.52 ± 0.36) × 10–7 m2/s.

We managed to supplement these data with the
results of analogous processing of localized plasticity
patterns observed at the easy slip stages in Cu, Ni, α-Fe,
γ-Fe, Zn, and Sn single crystals for which the propor-
tionality σ ~ ε also holds and a phase autowave is
observed. For this stage, we have 〈λVaw〉eg ~ (2.95 ±
1.05) × 10–7 m2/s (see Table 1).

The stage of linear strain-hardening and corre-
sponding localized plasticity phase autowaves were
observed for compressed samples of alkali-halide
crystals and rocks [6, 7]. The results of these experi-
ments given in Table 2 lead to 〈λVaw〉ahc = (3.44 ± 0.49) ×
10–7 m2/s and 〈λVaw〉rock = (1.44 ± 0.34) × 10–7 m2/s.

In the case of staining due to the slip of individual
dislocations, the process is usually characterized by
dislocation path length l and dislocation velocity Vdisl;
TECHNICAL PHYSICS  Vol. 63  No. 6  2018

train hardening stage

Nb α-Fe γ-Fe Ni Co Mo

1.8 2.55 2.2 2.1 3.0 1.2

5.3 4.7 6.5 6.0 6.0 7.4

0.33 0.54 0.34 0.35 0.5 0.2
Easy slip stage

Hf α-Fe γ-Fe Cu Zn Ni Sn

1.0 7.4 2.9 1.9 1.0 1.3 3.3

4.2 6.5 6.0 4.7 5.0 6.0 4.9
0.24 1.1 0.49 0.4 0.2 0.2 0.67
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Table 2. Comparison of quantities χVt and λVaw for alkali-
halide crystals [6] and rocks [7]

×107 m2/s KCl NaCl LiF Marble Sandstone

λVaw 3.0 3.1 4.3 1.75 0.6
χVt 7.0 7.5 8.8 3.7 1.5
λVaw/χVt 0.43 0.4 0.5 0.5 0.4

Table 3. Comparison of quantities χVt and lVdisl determined
by measuring of path lengths of individual dislocations

×107 m2/s NaCl [8] LiF [9] CsI [10] KCl [11] Zn [12]

lVdist 4.1 4.1 1.9 4.1 1.8

χVt 7.3 8.6 4.0 6.8 4.0
lVdist/χVt 0.56 0.47 0.47 0.6 0.45
these parameters were determined from analysis of the
available data on the mobility of individual disloca-
tions in single crystals [8–12] in the quasi-viscous f low
regime, in which Vdisl ~σ [13]. In such conditions, the
characteristic dislocation path lengths lie in the inter-
val 10–5 m ≤ l ≤ 10–4 m and the velocities of disloca-
tions belong to the range 10–3 m/s ≤ Vdisl ≤ 10–2 m/s.
The product of this quantities was estimated using the
relation lVdisl = τ, where τ is the duration of the
load pulse acting during the crystal loading. The
results of calculations of products lVdisl in these cases
are given in Table 3. It can be seen that 〈lV〉disl = (3.2 ±
0.35) × 10–7 m2/s in this case.

The experimental estimation of the parameters of a
localized plasticity autowave for plastic deformation of
TiNi intermetallide single crystal of the equiatomic
composition (strain-induced phase transformation
[14]) resulted in the value 〈λVaw〉pt ≈ 0.85 × 10–7 m2/s.

Comparing pairwise the above data by calculating
the Student t-test [15], we can conclude that the resul-
tant values differ insignificantly (i.e., belong to the
same general population). This leads to

(1)

Elastic processes in the tested materials were char-
acterized by interplanar distances χ in the crystal lat-
tice [16] and velocities Vt of propagation of transverse
elastic waves [17]. As follows from Tables 1–3, we have
〈χVt〉el ≈ (5.8 ± 0.3) × 10–7 m2/s for all tested materials.

Normalizing expressions (1) to the corresponding
products χVt, we obtain dimensionless relations

Numerical estimates of quantities  show that

(2)

which gives

(3)

This relation, which is known as the elastic–plastic
deformation invariant, holds in all cases of plastic
deformation considered above. It can be treated as a
universal characteristic of plastic deformation pro-
cesses. The data considered here are represented
graphically in Fig. 3.
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Ẑ

≈ ≈ ≈ ≈ ≈ ≈lwh disl eg pt ahc rock
ˆ ˆ ˆ ˆ ˆ ˆ 1/2,Z Z Z Z Z Z

λ = ≈
χ

aw

t

1ˆ .
2

V Z
V

TECHNICAL PHYSICS  Vol. 63  No. 6  2018
2. ON THE ORIGIN OF ELASTIC–PLASTIC 
INVARIANT

Let us consider some factors concerning the origin
of invariant (3), which plays an important role in the
evolution of localized plasticity because it connects
the characteristics of elastic (χ and Vt) and plastic
(λ and Vaw) deformation. It was shown earlier [1] that
the localization of plastic deformation is a conse-
quence of self-organization of a nonlinear active
deforming medium with structure defects [2]. A gen-
eral feature of self-organization processes in the open
thermodynamic system such as a deforming medium
is the decrease in its entropy in such a process [18].
This condition holds indeed in the case of generation
of autowaves of a localized plastic f low [19]. For this
reason, the use of the entropy factor for clarifying the
physical nature of plastic deformation localization
processes is quite justified.

In the localized plasticity evolution, the processes
of generation and relaxation of elastic stress concen-
trators with the generation of dislocations compete [1,
4, 5]. In this case, the spatiotemporal distributions of
fields of stressed σ(x, y, t) and plastic strains ε(x, y, t)
are transformed in a correlated way so that in accor-
dance with the elastic–plastic invariant, velocities Vt
and Vaw control the kinetics of the transformation pro-
cesses of the corresponding fields, while length χ and
wavelength λ specify the spatial scales of the redistri-
bution processes.

For this reason, it is convenient to write Eq. (3) for
the invariant in the form

(4)

where ratios λ/χ = pscale > 1 and Vt/Vaw = pkin > 1 have
the meaning of the scale and kinetic thermodynamic
probabilities, respectively [18]. Scale thermodynamic
probability pscale is interpreted as the number of possi-

λ χ = =scale

t aw kin

/ ˆ,
/

p Z
V V p
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Fig. 3. Comparison of products (■) and (●) appearing in the expression for the elastic–plastic invariant.
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ble sites of generation of an autowave of the localized
plastic f low in a deforming medium; i.e., it determines
the significant difference in the spatial scales of elastic
and plastic deformation processes. As it regards kinetic
thermodynamic probability pkin, it determines the
choice of the autowave velocity from the interval of its
possible values 0 ≤ Vaw ≤ Vt by the deforming system.

In view of the above arguments, Eq. (4) leads to the
relation

(5)
which can be transformed with the help of the Boltz-
mann formula to the equation for the entropy varia-
tion associated with the difference in the scales,

(6)

and the difference in the velocities,

(7)

Finally, we obtain the following relation from
Eqs. (5)–(7):

(8)

which means that in the course of generation of a
phase autowave, the entropy of the deforming system
decreases by –ΔS =ΔSscale – ΔSkin. The signs of the
terms ΔSscale > 0 and ΔSkin < 0 in Eq. (8) emphasize the
antagonism of the contributions of the scale and
kinetic factors to the nature of localized plastic defor-
mation. The contribution from the difference in
scales, λ/χ = pscale, is dissipative because it is equiva-
lent to the existence of the structure of the medium,
and this factor is responsible for the emergence of dis-
persion and dissipation processes in general [20].

= −scale kin
ˆln ln ln ,Z p p
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χscale B B scaleln lnS k k p

Δ = =t
kin B B kin

aw
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V
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B kin B scale
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Conversely, the contribution from the difference in
velocities Vt/Vaw = pkin, which reduces the total entropy
of the system, facilitates the self-organization of the
medium.

Quantity ΔS < 0 characterizes the total decrease in
the entropy during the formation of a phase autowave
of plastic f low localization, i.e., corresponds to self-
organization of the deforming medium. Since

(9)

we have ΔS = kBln(1/2) ≈ –0.7kB per elementary
relaxation event [21].

Let us consider the relation between elastic and
plastic displacements for a small deviation of the
deforming system from equilibrium. In the vicinity of
the energy minimum corresponding to equilibrium,
the velocities of displacements of the stress and strain
fields in the deforming system during spatiotemporal
transformations are linear in the gradients of plastic
and elastic strains to within the first-order terms [22],
i.e.,

(10)

(11)
respectively. In these relations, we assume that λVaw ≡
Dεε and χVt ≡ Dσσ.

In view of the nonlinear relation between the strain
and stress, which is described by the f low curve σ(ε),
we must also take into account the emergence of
velocities additional to expressions (10) and (11):

We obtain a system of equations that can be written in
the form

= Δ ≈B
1ˆ exp( / ) ,
2

Z S k

εε≈ ∇ε�
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pl pl,
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el el,
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TECHNICAL PHYSICS  Vol. 63  No. 6  2018



ORIGIN OF ELASTIC–PLASTIC DEFORMATION INVARIANT 833
The coefficients in this system form matrix

 [22] whose nondiagonal components are

identical in accordance with the Onsager principle of
symmetry of kinetic coefficients [22, 23]; i.e., Dεσ =
Dσε and, accordingly, λVaw ≈ χVt. As it regards diagonal
coefficients Dεε and Dσσ, which are the coefficients of
the autowave equations of the localized plastic f low [1,
4, 5], they are not necessarily identical; for example, it
was shown in [1] that Dεε ≪ Dσσ.

CONCLUSIONS
1. It has been shown that the relation

holds for all investigated cases of plastic deformation
with a linear strain-hardening law and can be treated
as the elastic–plastic invariant.

2. Analysis of the invariant origin indicates the
validity of the assumption concerning self-organiza-
tion of a deforming medium in the course of straining.

3. The invariant formalizes the relation between
elastic and plastic components of strain of materials
and is important for solving problems of theoretical
and applied plasticity.

4. The elastic–plastic invariant necessitates the
allowance for the role played by elastic (lattice) char-
acteristics of materials and is important in the devel-
opment of models and mechanisms of evolution of a
plastic f low.
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