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Abstract—Various types of plastic instabilities that emerge in intermittent creep have been studied experimen-
tally for AlMg6 aluminum–magnesium alloy. It has been shown that intermittent creep exhibits threshold
dynamics. The deformation step on the creep curve of amplitude is ~1–6% and begins when the rate of the
preceding continuous creep attains a certain critical value. In the course of evolution of the step, the strain
rate varies in the interval that spans more than two orders of magnitude, and transitions occur between dif-
ferent dynamic regimes of type A and B characterized by different stress drop regularity levels in the force
response. Nonlinear aspects of the deformation behavior of the alloy in the intermittent creep conditions are
considered.
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INTRODUCTION

In recent years, intermittent deformation has
drawn the attention of researchers as an example of the
complexity of the spatiotemporal dynamics due to the
collective behavior of dislocations [1–3]. At the same
time, an unstable f low is a technologically important
problem, since it unfavorably affects the formation of
industrial metal alloys. In particular, strain localiza-
tion in bands deteriorates the mechanical properties of
structural materials and may cause their premature
corrosion and sudden fracture. In addition, static or
propagating deformation bands spoil the surface of
industrial articles.

Most studies devoted to intermittent plastic f lows
were performed with a constant strain rate in a hard
tensile testing machine, when it is manifested in stress
drops (the Portevin–Le Chatelier (PLC) effect) [1–8].
The conditions of a constant increase in the stress rate
in a soft tensile machine were used in a much smaller
number of tests [4—6] despite that the first observa-
tions of stepwise plastic straining in these conditions
were made in the second half of the 19th century.
Intermittent creep was studied in a much smaller
number of experiments than the PLC effect in metal
alloys. Intermittent creep [7–10] manifests in the form
of deformation steps with an amplitude of ~1–6% at
the first and second creep stages; it was described in
the literature as sudden elongation, spontaneous strain-
ing, or strain burst. In contrast to a constant strain rate
and a constant (nonzero) stress growth rate, informa-
tion on the step response on the creep curves (ladder
creep) is extremely scarce.

At present, the problem of deformation macrosteps
and the spatiotemporal patterns of deformation bands
in the course of intermittent creep remain not quite
clear in view of a comparatively small number of pub-
lications and the absence of these investigations over
the last three decades. At the same time, an analysis of
the mechanisms of intermittent creep and band for-
mation is of great practical importance. In addition,
considering the nonlinear dynamics, it is important to
know the mechanism of spontaneous formation of
spatiotemporal (dissipative) patterns of macroscopi-
cally localized plastic deformation under the condi-
tions of a preset (controllable) external force, i.e., in a
dynamically determined system.

This study is aimed at the in situ analysis of the crit-
ical conditions of formation of a macroscopic strain
burst under the conditions of intermittent creep of the
AlMg6 aluminum–magnesium alloy, the correlation
between the force response to the evolution of a strain
burst and the spatiotemporal structures of deforma-
tion bands, as well in investigation of transitions
between different dynamic regimes of plastic instabil-
ities and an analysis of the features of dynamic chaos
and self-organized criticality.

1. EXPERIMENTAL TECHNIQUE
The material under investigation was the AlMg6

industrial aluminum–magnesium alloy (Al–6.15%
Mg–0.65%Mn–0.25% Si–0.21%Fe–0.1% Cu–
0.12% Zn wt %), which exhibits discontinuous f low in
hard and soft testing machines [11, 12], including the
creep conditions [13, 14]. Plane samples in the form of
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double-sided blades with a working part size of 40 ×
3 × 0.5 mm were machine-cut from a cold-rolled strip
along the rolling direction. Prior to the test, the sam-
ples were annealed at 450°C for 1 h and quenched in
air. After the thermal treatment, the average grain size
was about 10 μm. The results of analyzing the micro-
structure were described in [15]. The complex of high-
speed methods of detecting the strain, load, and anal-
ysis of the dynamics and morphology of deformation
bands, as well as the scheme of tension in a soft testing
machine were described in [13, 14].

2. RESULTS AND DISCUSSION

2.1. Critical Condition for the Formation
of a Deformation Step during Creep

The samples were loaded in two consecutive stages,
i.e., (i) loading stage at a constant rate  = 1.5 MPa/s
until the instant t0 that corresponds to applied stress
σ0 = (0.8–0.9)σu (Fig. 1, line 0A), where σu ≈ 320 MPa
is the ultimate strength, and (ii) creep stage at engi-
neering stress σ0 = const (Fig. 1, line AB). After time τ
following the beginning of the creep stage, the sample
loses stability, and the complex spatiotemporal defor-
mation band structure spontaneously spreads over the
sample surface along the direction of tension. It

σ� 0

should be emphasized that, immediately before the
start of a strain burst, the continuous creep rate
increases according to the power law  = aexp(bt)
analogously to the behavior of the strain rate during
the third creep stage (see inset to Fig. 1), where a ≈
10–5 s–1 and b ≈ 0.3 s–1 for applied stress σ0 = 270–
280 MPa, which considerably exceeds the conditional
yield stress σ0.2 ≈ 155 MPa and the critical stress corre-
sponding to the first deformation step σc ≈ 165 MPa at
room temperature and stress rate  ~ 1–3 MPa/s. In
contrast to the conventional third state of continuous
creep, the critical macroscopic event is not the frac-
ture of the sample, but a strain burst, viz., a large step
on the creep curve with an amplitude of several per-
cent.

It was found that the strain burst begins at the
instant when the continuous creep rate attains a cer-
tain critical value  ~ 10–4 s–1. Each next strain burst
begins after additional sample loading with a stress of
5–10 MPa, when the rate of the preceding continuous
creep attains critical value  like the first strain
burst. Therefore, the following empirical condition is
determined for the beginning of the strain burst during
continuous creep of AlMg6 alloy at room temperature:
prior to the strain burst, the continuous creep rate var-
ies over time from a constant dependence (like at the
second creep stage) to a power dependence (like at the
third stage) until the critical value  ~ 10–4 s–1 is
attained. It was found that the typical critical ampli-
tude of strain burst in these testing conditions is ~1–
6%, and the strain burst waiting time (incubation
interval) is τ ~ 10–100 s.

2.2. Correlation between the Deformation and Force 
Responses and the Deformation Band Dynamics

The data of video recording at a rate of
500 frames/s show that, as in the case of loading at a
preset rate  = const [6], the strain burst under creep
conditions for σ0 > σ0.2 begins simultaneously with the
nucleation and subsequent expansion of the primary
deformation band that has the form of an expanding
neck inclined to the sample axis at an angle of about
60°. In the course of expansion, the band boundaries
move antiparallel to that of the center of mass of the
band remains unchanged. It was found that the broad-
ening of the band consists of the following two sequen-
tial stages:

(i) The first (unloading) stage of very rapid broad-
ening during 2–10 ms at a boundary velocity of
~10 cm/s, when the band width exceeds 90% of
the final value (about 2 mm). This stage is accompa-
nied by a deep stress drop with an amplitude of about
3–10 MPa.

(ii) The second (reloading) stage of slow broaden-
ing during a time interval of 10–100 ms with an aver-
age velocity of the boundary of about 3 mm/s. This
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Fig. 1. Diagram of loading of a sample in a soft testing
machine: (1) time dependence of applied stress σ(t); 0A is
the active loading stage with a constant stress growth rate

= 1.5 MPa/s TO fixed stress σ0 = 270 MPa at t0 = 180 s;
AB is the creep stage, σ0 = const; (2) time dependence of
strain ε(t); τ is the incubation interval, i.e., the time of
expectation of a strain burst in the creep regime. Inset
shows the strain strain burst of amplitude Δεm ≈ 4%. Prior
to the strain burst, the creep rate increases continuously
analogously to the third creep stage.
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stage is accompanied by a partial or complete resto-
ration of the stress.

Figure 2 shows a typical example of two-stage
broadening of the deformation band. It can be seen
that the durations of the first and second stages are 8
and 20 ms, respectively. In addition, the shape of the
stress drop at the first stage correlates well with the
time dependence of the band area A(t) = [yr(t) –
yl(t)]w(t), where yr(t) and yl(t) are the time depen-
dences of the coordinates of the right and left bound-
aries of the band, respectively, and w(t) is the sample
width. At the reloading stage, the velocity of the band
boundaries along the tension axis gradually decreases;
when it attains the lower limit (~1 mm/s), the band
boundaries generate bands at different instants with a
time interval of 100–200 ms. The secondary bands are
identical as a rule to the parent band and also have
the form of expanding necks inclined at an angle of
55°–63° to the direction of tension. Then, the bound-
aries of the secondary bands generate the bands of the
third generation, etc.

Figure 3 shows the results of synchronous record-
ing of strain Δε and force response σ(t) to the evolution
of a deformation step with amplitude Δεm of about 4%
on the creep curve (Fig. 3, curves 1, 2). The video
recording data obtained with a high speed of
2000 frames/s are processed in the form of the so-
called correlation diagram, viz., time dependence y(t)
of the coordinates of the boundaries of deformation
bands generated and broadened in the course of evo-
lution of a strain burst. The main features of this cor-
relation diagram were described in [14]. In particular,
it was found that the correlation diagram consists of
two branches separated by the point of inflection on
the Δε(t) curve at which the strain rate is maximal
( ≈ 4 × 10–2 s–1). The video recording data show that
the macrolocalized strain appears near a sample blade
and propagates first jumpwise like a type-B PLC band
due to the token passing of the strain from one band
(expanding neck) to another in accordance with the
above-described mechanism, then (after the inflec-
tion point of the Δε(t) curve) quasi-continuously like a
type-A PLC band that propagates to the opposite blade of
the sample, reaching it at instant P (see curve 4 in Fig. 3).
At the next instant F, a new band is generated near this
blade, which moves in the opposite direction, demon-
strating the opposite deformation behavior (first prop-
agates continuously like a type-A band; then, after
point D, it propagates discretely and jumpwise like a
type-B band).

Let us consider the transitions between different
dynamic regimes in greater detail in the evolution of an
individual step on the creep curve. It should be noted that
the instantaneous strain rate  = ∂[Δε(t)]/∂t varies in a
wide range from  = 10–4 s–1 to  ≈ 10–2 s–1 during
the evolution of a strain burst, and transitions occur
between the behaviors of PCL bands of the B and A
types; namely, plastic instability of type A is observed

ε�m

ε�
ε� cr1 ε�m

in the strain rate interval 2 × 10–2 to 4 × 10–2 s–1. At the
same time, if the strain rate of the sample decreases
below 2 × 10–2 s–1, the type-A instability is trans-
formed into the B-type instability.

These results are in conformity with the conditions
for the B–A transitions in tests with a constant strain
rate  = const in hard tensile testing machines. It is
known from the literature [16, 17] that a transition
between different PLC regimes is controlled by a sin-
gle scalar parameter, viz., strain rate , which is kept
constant during testing on a hard tensile testing
machine. In particular, the B–A transition in alloys
of the Al–Mg system occurs in the interval ~10–3 to
10–2 s–1 (see [16–18]). In the case of intermittent creep
of the AlMg6 alloy (see Fig. 3), the B–A and then the
A–B transitions occur during the evolution of an indi-
vidual strain burst, when the instantaneous strain rate

ε� 0

ε� 0

Fig. 2. Comparison of the time dependences of stress σ (1),
area A (2) of the expanding deformation band, and coordi-
nates yr (3) and yl (4) of the right and left boundaries of the
deformation band. Horizontal arrows show the fast and
slow stages (stages 1 and 2, respectively) of expansion of
the band. Inset shows the initial and final images of the
expanding band at stage 1 from positions of generation (y0)
of the band and positions of the right (yr) and left (yl)
boundaries of this band, respectively.
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of the sample passes through the second critical value
 ≈ 2 × 10–2 s–1.
Let us now consider the dependence of true stress

σth on true strain εth in the evolution of an individual
strain burst under intermittent creep conditions. True
stress σth and true strain εth are calculated using famil-
iar expressions [19]

(1)

(2)

The σth vs. εth curves are plotted to characterize the
mechanical properties of materials under large strains
in testing with a controllable constant strain rate (  =
const) or with a constant stress growth rate (  =
const). In the case of creep, the creep curve (time
dependence of strain ε(t)) is usually constructed.
However, in the conditions of intermittent creep, it is

ε� cr2

+σ = σ εth (1 ),

ε = + εth ln(1 ).

ε� 0

σ� 0

expedient to plot the σth(εth) dependence to measure
the true strain increment Δδ per deformation band.
Figure 4 shows the σth vs. εth curve obtained by elimi-
nating time from the temporal dependences of true
stress σth(t) and true strain εth(t) calculated by formu-
las (1) and (2) from the results of measurements
obtained using the force and strain sensors, i.e., from
the σ(t) and ε(t) experimental curves (see Fig. 3,
curves 3, 1) during the evolutions of a strain burst with
an amplitude of 4%.

Figure 5 shows the histogram ni(Δδ) of true strain
increment Δδ between the nearest stress drops on the
segment of the σth vs. εth curve corresponding to an
individual strain burst. It can be seen from Figs. 4 and 5
that the strain increment almost remains unchanged
during the evolution of a macroscopic strain burst and
amounts to Δδ = (3.0 ± 0.57) × 10–2%. Considering
that each stress drop is found to be associated with the
nucleation and broadening of a single deformation
band, we can conclude that each such band carries
nearly the same true strain; therefore, it can be treated
as a quantum of the macrolocalized intermittent strain
under the creep conditions.

2.3. Analysis of Nonlinear Oscillations in the Force 
Response during the Evolution of a Strain Burst

The above-described evolution of plastic instabili-
ties in the course of macroscopic intermittent creep is
an illustrative example of nonequilibrium morpho-
genesis, viz., spontaneous formation of complex spa-
tiotemporal structures in an initially homogeneous
and nonlinear media like effects of turbulence or den-
drite solidification of a supercooled melt [20]. As
noted above, time series σ(t) consisting of numerous
nonlinear oscillations (in the form of repetitive stress
drops) is a complex force response of the sample–test-
ing machine mechanical system to the spontaneous

Fig. 3. Time dependences of strain increment Δε (1) and
strain rate  (2) developed during a strain burst, as well as
force response σ (3) and coordinate y (4) of the boundaries
of the bands (correlation diagram) in a sample of AlMg6
alloy for applied engineering stress σ0 = 268 MPa. Vertical
lines mark different types (A and B) of plastic instabilities.
Horizontal dashed line indicates second critical strain rate

 ≈ 2 × 10–2 s–1 at which a transition between dynamic
regimes A and B occurs.
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evolution of a single macroscopic strain burst in creep
conditions, when the external force acting on the sys-
tem is maintained at a constant level. This intermittent
time series, which maps the evolution of the spatio-
temporal pattern of strain bursts onto one degree of
freedom, makes it possible, first, to control the popu-
lations of deformation bands and the dynamic behav-
ior of various types (A and B) directly in the course of
straining and, second, to use the methods of statistical
analysis of time series to analyze the effects of self-
organization and dynamic chaos in the deformation
behavior of a material.

2.3.1. Statistical analysis. It should be noted above
all that, despite that an individual stress drop corre-
sponds to approximately the same increment of the
true strain, the amplitudes of true stress drops are dis-
tributed in a wide range of values of approximately
0.3–10 MPa, and the histogram of the stress drops has
a nearly hyperbolic shape (Fig. 6a). In the log–log
coordinates, the statistical distribution function
D(s) = N–1dN/ds of the normalized stress drop ampli-
tude s = Δσtr/σtr is approximately linear with a slope of
1.87 to the s axis (see inset to Fig. 6a). (Here, σtr is the
initial (prior to strain burst) level of the true stress, Δσtr
is the true stress drop, N is the total number of stress
drops, and dN is the number of drops with amplitudes
falling into the narrow interval (s – δs/2, s + δs/2); see
[21].) This means that the stress drop amplitude distri-
bution function obeys the power law

(3)
with exponent α = 1.87. It is known that the power dis-
tribution of the avalanche amplitudes with an expo-
nent on the order of unity is typical of earthquakes
(Guttenberg–Richter law [22]) and is a paradigm (to
be more precise, a feature) of self-organized criticality
(SOC).

It should be noted that the distribution of stress
drop durations Δtd also demonstrates a scaling form
with exponent β as follows:

(4)
Normalized distribution D(Δtd) is shown in Fig. 6b

in the log–log coordinates. The dashed line corre-
sponds to exponent β ≈ 1.46.

The normalized stress drop amplitude is connected
with the stress drop duration by the power law

(5)
Figure 6c shows the dependence of log s on log Δtd

with exponent h = 0.7. According to [23], coefficients
α, β and h obey the relation

(6)
The scaling laws in Eqs. (3)–(5) and dimensionless

relation (6) also indicate the self-organized criticality
state [17, 23].

−α( ) ~D s s

−βΔ Δ( ) ~ .d dD t t

Δ~ .h
ds t

β = α − + → ≈ − + =( 1) 1 1.46 0.7(1.87 1) 1 1.6.h

In SOC notation, the term criticality indicates the
existence of long-range correlations as in the case of
the second-order phase transitions in the vicinity of
the critical point [24]. Therefore, the results presented
above clearly indicate the existence of strong spatial
correlations of plastic instabilities in the course of
intermittent creep.

According to [25, 26], the global dynamics for sys-
tems with SOC is assumed to be controlled by long-
range correlations among a large number of local
objects (nonequilibrium transfer carriers). According
to the results of this study, these carriers are expanding
deformation bands, i.e., quanta of macrolocalized
strain, which form spatiotemporal structures whose
dynamics corresponds to the behavior of PLC bands
(of types A and B), and spatial correlation is governed
by the token passing mechanism of propagation of the
macrolocalized strain, in which each band (except the
initial one) is formed at the boundary of the preceding
band, where internal stresses exceed a certain thresh-
old value.

2.3.2. Transitions between nonlinear dynamic
regimes with self-organized criticality. The transitions
between PLC dynamic regimes of the A, B, and C
types were usually studied under the conditions of ten-
sion at a constant strain rate  = const in hard testing
machines [16–18, 20, 21, 27, 28]. The traditional
interpretation of transitions between these dynamic
regimes upon a change in the strain rate is based on
analyzing the competition between two characteristic
times; time tL of reloading between two successive
stress drops and plastic relaxation time tR for internal
stresses. Since the rate sensitivity of the f low stress is
negative in the region of the PLC effect, an increase in
the strain rate leads to at least three consequences, i.e.,
(i) a decrease in the total stress level and, hence, an
increase in the relaxation time associated with the
thermoactivation motion of dislocations in the non-

ε� 0

Fig. 5. Histogram ni(Δδ) of the true strain increment
between true stress drops.
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uniform field of internal stresses in the region of a
deformation band; (ii) a decrease in the local strain
rate drop in the band; and (iii) a decrease in the
reloading time.

At a very low strain rate, the reloading time is very
long, and tL ≫ tR. Internal stresses are fully relaxed,
and no spatial correlation between bands is observed.
In the absence of spatial correlation, bands are formed
in random positions in which the average stress attains
the threshold value of instability nucleation, which
leads to type-C behavior of the PLC effect. In early
models of the PLC effect, spatial correlations were
ignored, and the PCL dynamics was described exclu-
sively in terms of relaxation oscillations [29] based on
the concept of competition between dislocation pin-
ning and depinning in the field of impurity atoms. In
view of the random nature of the events associated
with type-C sterss drops, the statistical distributions of
stress drop amplitude and the intervals between them
have the shape close to the Poisson distribution [16,
17]. With increasing strain rate, the time of reloading
becomes shorter, while the plastic relaxation time
increases. When these two quantities reach the same
order of magnitude, internal stresses do not relax com-
pletely and facilitate the nucleation of new bands in
the vicinity of pervious bands, which leads to jump-
wise propagation of localized strain, associated with
the B-type behavior of the PLC effect.

At high strain rates (tL ≪ tR), only weak plastic
relaxation can occur during stress restoration, which
ensures a high degree of spatial correlation and quasi-
continuous propagation of A-type bands. Internal
stresses are always close to the critical value corre-
sponding to the beginning of plastic instability so that
many dislocation ensembles are close to the threshold
of depinning from impurity ambience. As a result, the
dislocation avalanches can be unpinned on any scale
level and any time under the action of f luctuation of
internal elastic stress fields. This leads to the power-
law distributions of stress drops and intervals between
them, which are free of the selected spatiotemporal
scale. This situation is typical of systems that demon-
strate the SOC state. The regime of crossover of type A
and B dynamic regimes is expected for tL ~ tR [17].

The pattern described above corresponds qualita-
tively to the structure of the force response during the
evolution of a strain burst in the conditions of inter-
mittent creep in the AlMg6 alloy. The main peculiarity
is that the movable clamp in a soft tensile testing
machine during the evolution of a strain burst in the
intermittent creep conditions first develops a positive
acceleration  > 0 to the point of inflection, at which

 = 0 (point P in Fig. 3), then negative acceleration 
< 0 at the sharp deceleration stage. For this reason,
instantaneous strain rate  continuously increases in
the time interval to point P, then decreases. When
strain rate  attains the critical value  ≈ 2 × 10–2 s–1

(point M in Fig. 3), the reloading time tL decreases to
~10 ms, while the unloading time equal to the duration
of the stage of the very fast broadening of the deforma-
tion band (see Fig. 2) (i.e., plastic relaxation time tR)
increases from approximately 1.5 to 8 ms.

ε��
ε�� ε��

ε�

ε� ε� cr2

Fig. 6. Results of statistical analysis of the stress drops in
the force response to the evolution of a strain burst in the
creep conditions. (a, b) Densities of the distribution of
normalized stress drop amplitude s and its duration Δtd,
respectively. Dashed lines show the negative slopes of these
distributions in the log–log coordinates, which are equal
to –1.87 and –1.46 for stress drop amplitudes and their
durations, respectively; (c) dependence of s on Δtd in the log–
log coordinates. Dashed straight line indicates the power
dependence of these quantities with exponent h = 0.62.
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In the vicinity of the critical strain rate , the
reloading time is comparable with the characteristic
plastic relaxation time (tL ≈ tR ≈ 8–10 ms), and the
crossover of the B and A dynamic regimes is observed;
namely, the jumpwise propagation of localized plastic
deformation along the sample, which is accompanied
by stress drops of type B with increasing frequency of
drops is transformed into quasi-continuous spreading
of a type A band with weak oscillations in force
response σ(t). Then, at the deceleration stage (when

< 0), the strain rate  continuously decreases, and
the above pattern is scanned in the reverse sequence: a
transition from dynamic regime A to regime B occurs
near point D when the strain rate decreases to critical
value  ≈ 2 × 10–2 s–1 (Fig. 3) at which tL ≈ tR.

As noted above, direct observations of the sample
surface using a high-speed video camera have shown
that in the type B dynamic regime, each band nucle-
ates at the boundary of the preceding band. Conse-
quently, the instability threshold is attained at the
band boundary at which the strain gradient is maxi-
mal. This gradient induces elastic stresses that demon-
strate incompatibility between the region plastically
deformed by shear and the undeformed region of the
material. When these stresses attain a critical value,
e.g., the threshold stress of depinning of dislocations
from the impurity ambient and/or the stresses of col-
lective actuation of the Frank–Reed sources or their
combination, the plastic relaxation of these elastic
stresses due to the generation and broadening of the
new deformation band takes place, which in turn leads
to the evolution of the next stress drop in the force
response in the inertial creep testing machine.

The strain rate of the entire sample varies over a
relatively wide range (from  ~ 10–4 s–1 to about 4 ×
10–2 s–1) during the evolution of an individual strain
burst. This leads to the rate scanning of different
dynamic regimes (A and B). The resulting distribution
of the stress drops is found to be of the power-law type,
which indicates the tendency of the system to SOC.
This conclusion is not surprising because the follow-
ing basic conditions for the emergence of SOC are
observed in the case of intermittent creep:
(i) threshold dynamics (critical stress of depinning of
dislocations from stoppers and/or collective actuation
of the Frank–Reed sources, and so on); (ii) very slow
external control relative to the rate of evolution of
intrinsic events (in our case, local strain rates associ-
ated with a deformation band considerably exceed the
overall strain rate of the sample, which precedes the
evolution of a strain burst); (iii) the existence of two
(fast and slow) time scales (tL and tR); and (iv) spatial
coupling between defects, which probably appears in
the form of internal stresses associated with the geo-
metric incompatibility between adjacent regions of the
material that strongly differ in the plastic strain level
(gradient plasticity stresses).

ε� cr2

ε�� ε�

ε� cr2

ε� cr

Thus, the nonlinear dislocation dynamics in the
course of macroscopic intermittent creep of the Al–
Mg system is a new example of the self-organized crit-
icality state. Note that the power-law statistics was
observed for stress drops at low-temperature jumpwise
deformation of niobium in a hard testing machine
[30], for discrete events of acoustic emission of Al–Mg
polycrystalline alloy deformed at a constant rate  =
const under the conditions of the PLC effect [31, 32],
as well as for amplitudes of the AE signals in the mac-
roscopically continuous creep in ice single crystals
[33] and electromagnetic emission signals in the case
of uniaxial compression of ice, which is associated
with the dynamics of dislocation avalanches and
cracks during active loading in a soft machine [34].

In this work, in situ experiments were used to
determine the mesoscopic mechanism of intermittent
creep, which involves the spontaneous formation
(during tenths of a second) of a complex spatiotempo-
ral structure of deformation bands, which induces the
evolution of a macroscopic step on the creep curve
with an amplitude of up to 10%. The microscopic
nature of intermittent creep remains not quite clear
and requires further investigation.

CONCLUSIONS
The main results of this study can be formulated as

follows.
1. Intermittent creep exhibits the threshold dynam-

ics: a strain burst starts when the rate of the preceding
continuous creep attains a certain critical value. The
empirical conditions for the emergence of a strain
burst in the AlMg6 alloy at room temperature have
been determined. Prior to the strain burst, the creep
rate changes from a constant value (as at the second
creep stage) to the values increasing in accordance
with a power law (as at the third creep stage) to critical
value  ~ 10–4 s–1.

2. Each stress drop in the structure of the force
response correlates with a single mesoscopic deforma-
tion band in the form of an expanding neck inclined to
the sample axis at an angle of about 60°. The evolution
of the band is characterized by two consecutive (fast
and slow) stages. At the slow stage, the velocity of the
band boundaries gradually decreases, and when it
drops to the lower limit (about 1 mm/s), the boundar-
ies of secondary bands generate the third-generation
bands, and so on. As a result of token passing of plastic
deformation from one mesoband to another, when
each band except the primary one is generated at the
boundary of the preceding band, the macroscopically
localized deformation propagates jumpwise along the
direction of tension of the sample like a PLC macro-
scopic band of type B.

3. During the evolution of a strain burst, the strain
rate varies in the interval from ~10–4 to 4 × 10–2 s–1,
and a transition between the PLC regimes of types B

ε� 0

ε� cr1



1532

TECHNICAL PHYSICS  Vol. 62  No. 10  2017

SHIBKOV et al.

and A occurs when the strain rate passes through the
second critical value  ≈ 2 × 10–2 s–1. These regimes
are characterized by different levels of stress drop reg-
ularity in the force response.

4. It has been established that the temporal struc-
ture of the force response to the evolution of a macro-
scopic step on the creep curve demonstrates a ten-
dency to the self-organized criticality state, which is a
feature of a nonlinear behavior of the material in the
intermittent creep conditions.
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