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Abstract—The thermal conductivity of nanoliquids has been simulated by molecular dynamics method. We
consider nanofluids based on argon with aluminum and zinc particles with sizes of 1–4 nm. The volume con-
centration of nanoparticles is varied from 1 to 5%. The dependence of the thermal conductivity on the volume
concentration of nanoparticles has been analyzed. It has been shown that the thermal conductivity of a nano-
fluid cannot be described by classical theories. In particular, it depends on the particle size and increases with
it. However, it has been established that the thermal conductivity of nanofluids with small particles can even
be lower than that of the carrier f luid. The behavior of the correlation functions responsible for the thermal
conductivity has been studied systematically, and the reason for the increase in the thermal conductivity of
nanofluid has been explained qualitatively.
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INTRODUCTION
It is well known that the thermal conductivity of

solids (in particular metals, their oxides, graphite, and
its derivatives) is several orders of magnitude higher
than the thermal conductivity of f luid heat-transfer
materials (water, ethylene glycol, various freons, etc.).
The idea of using disperse f luids as heat-transfer and
cooling agents was put forth long ago; however, tradi-
tional disperse liquids could not be used for this pur-
pose due to sedimentation of disperse particles and
their abrasivity. Disperse liquids with nanoparticles,
called nanofluids, are free of these drawbacks. Even
the first experiments on measuring their thermal con-
ductivity [1, 2] demonstrated brilliant results; the
addition of even small (on the order of the fraction of
percent) concentrations of metal nanoparticles sub-
stantially increased the thermal conductivity of the
basis liquid. Therefore, nanofluids can successfully be
used for cooling engines and aggregates (in particular,
in electronic system, heat and power engineering,
transportation of heat, etc.). In 2008, Routbort with
his colleagues developed a project on application of
nanofluids as cooling agents in industrial units (see
also [3]).

Since nanofluid f lows are involved in all applica-
tions, reliable information on the thermalphysical
characteristics of nanofluids is required to control the
relevant processes. These characteristics are obviously
not standard and cannot be described by classical the-
ories developed for f luids with coarse particles. As

regards viscosity, such understanding has been
reached (see, for example, [4–9] and the literature
cited therein). It was shown (both experimentally and
using molecular dynamics simulation) that the viscos-
ity of nanofluids substantially exceeds the viscosity of
coarse-dispersed liquids with the same volume con-
centration of nanoparticles. However, in contrast to
the latter case, the viscosity depends on the particle
size and material, the nanofluids with the smaller par-
ticles have the larger viscosity. The reasons for these
peculiarities are generally clear, although universal
formulas have not been obtained and can hardly be
expected.

The situation with the thermal conductivity of
nanofluids is more complicated despite a very large
number of publications devoted to its measurement. It
has been established that the thermal conductivity of
nanofluids attains a certain limiting level upon an
increase in the particle concentration [10, 11]. In addi-
tion, it also depends on the nanoparticle size and
increases with it. Experimental results concerning the
excess of the thermal conductivity over the corre-
sponding value for the carrier f luid are rather contra-
dictory. It is usually pointed out that this quantity
depends on the concentration and is always higher
than the value predicted by the Maxwell’s theory

(1)⎡ ⎤− ϖ ϕλ = λ +⎢ ⎥+ ϖ − ϕ − ϖ⎣ ⎦

3(1 )1 ,
1 2 (1 )f
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where ϖ = λf/λp, λf and λp are the thermal conductiv-
ities of the carrier f luid and the material of particles,
and ϕ is their volume concentration. The thermal con-
ductivity of nanofluids is known to increase with the
particle size, but what is its value in nanofluids with
very tiny particles?

This study is devoted to analyze this question. It is
extremely difficult to answer it experimentally because
the number density of particles rapidly increases upon
a decrease in their size (for a given volume concentra-
tion, it is inversely proportional to the third power of
the particle radius). This leads to their active interac-
tion, accompanied by the formation of conglomerates.
As a result, the average size of particles and the cor-
rectness of the interpretation of experimental data
change substantially. To avoid agglomeration, surface-
active substances (surfactants) are conventionally
used. However, a surfactant substantially changes the
thermalphysical properties of a nanofluid, the effect
being the stronger the smaller the nanoparticle size.
On the other hand, the molecular dynamics method,
which is characterized by the same predictability as
experiment, makes it possible to conduct the experi-
ment in the purest form (in particular using mono-
disperse particles). That is why, here, we are using pre-
cisely this method.

There is one more reason for applying the molecu-
lar dynamics method. The thermal conductivity of a
nanofluid is a certain integral property of this non-
standard two-phase system. The experimental investi-
gation of this property does not reveal the mechanisms
that determining the thermal conductivity of nanoflu-
ids; the information on its dependence on certain
parameters (the volume concentration of particles,
their size, etc.) is quite rough. A large number of phe-
nomenological models of heat conduction of nanoflu-
ids have been constructed based on different model
concepts concerning, e.g., the effect of Brownian
movement of particles (see review [12]). All of these
models are extremely ingenious, but are usually based
only on indirect physical considerations concerning
the transport mechanisms in nanofluids. On the other
hand, the molecular dynamics method makes it possi-
ble to investigate and analyze these mechanisms
explicitly, which provides a solid foundation for con-
structing adequate macroscopic models of heat con-
duction in nanofluids.

The molecular dynamics simulation taking into
account the different contributions to the thermal
conductivity of nanofluids separately was carried out
earlier. In particular, the thermal conductivity of
xenon-based nanofluids with addition of nanoclusters
of platinum atoms was modeled in [13]. However, that
publication had a number of methodical drawbacks;
its authors admitted that the thermal conductivity of
the nanofluid, which is a binary system, was calculated
using the formula for one-component systems and the
contribution of diffusion was disregarded. In this

study, we consider model nanofluids with argon as the
carrier f luid and with spherical aluminum and zinc
nanoparticles. The nanoparticle size was varied in the
range of 1–4 nm, and their volume concentration was
varied in the range of 1–5%.

1. SIMULATION TECHNIQUE
In simulation, we employed the standard molecu-

lar dynamics method. We used the original SibMD
package that was applied earlier for solving various prob-
lems in the theory of transport of nanofluids [14–16].
The simulation was carried out in a cubic cell with
periodic boundary conditions. The interaction of
atoms of the carrier medium was determined by the
Lennard-Jones potential

(2)

where σ is the effective diameter of molecules of the
medium, ε is the depth of the potential well, and r =
|ri – rj| is the distance between the centers of the ith and
jth molecules.

The interaction of molecules of the carrier medium
with a nanoparticle was determined by the RK poten-
tial as follows [17]:

(3)

where i = 9, 3, a9 = 9/8, a5 = 3/2, C9 = (4πε12 )/45Vp,

C3 = (2πε12 )/3Vp, and  = ρp/mp. Here, ρp is the
density of the nanoparticle material, mp is the atomic
mass of the substance of the nanoparticle, R is the
nanoparticle radius, and σij and εij are the parameters
of potential (2) of the interactions of a carried medium
molecule with a nanoparticle atom.

As the interaction potential for nanoparticles, we
are using the potential [18], which has the following
form for monodisperse particles:

(4)
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Here, R is the nanoparticle radius and  and  are
the parameters of the Lennard-Jones potential (2) of
the interactions between nanoparticle atoms. Poten-
tials (3) and (4) are constructed under the assumption
that the interaction of atoms (molecules) of the carrier
medium with nanoparticle atoms and the interactions
between nanoparticle atoms are described by poten-
tials of type (1) with parameters σ12, ε12 and , ,
respectively.

The simulation was performed as follows. Mole-
cules of the medium and nanoparticle were distributed
uniformly in the simulation cell in accordance with
the preset values of the carrier medium density and the
volume concentration of nanoparticles. The density of
the carrier medium was defined by virial parameter
ρ = Nσ3/V; the volume of the simulation cell for the
nanofluid was defined by the relation V = αN1σ3/  +
4πβN2R3/3, where N1 and N2 are the numbers of f luid
and nanoparticle molecules, respectively, and α =
V/V0, V0 = Nσ3/  being the volume of densely
packed N molecules. After the addition of nanoparti-
cles, coefficient β was chosen such that the pressure of
the nanofluid is equal to the pressure of the carrier
fluid with a preset density.

The initial velocities of molecules were defined in
accordance with the Maxwellian distribution at a given
temperature, while the initial velocities of nanoparti-
cles were assumed to be zero. Calculations began after
the initial relaxation period, when the entire system
achieved equilibrium. The Newton equations were
integrated using the Verlet integration scheme.

Since the range of the potentials used here is equal
to infinity, the potential must be truncated in the
course of simulation. The cutoff radius for potential
(2) was 2.5σ, while for potential (3), it was chosen so
that the force exerted on an argon atom by a nanopar-
ticle over the cutoff radius of potential (3) is equal to
the force of interaction of two molecules over the cut-
off radius for potential (2). The potential of nanopar-
ticles was truncated at a distance at which the force of
interaction of nanoparticles was zero; i.e., we used the
so-called soft-sphere potential.

The parameters of the interaction potential for the
argon molecules were as follows: σ = 3.405 Å and ε/kB =
119.8 K [19]. To calculate the parameters of potentials
(3) and (4), we used the following parameters of
potential (2): α = 2.46 Å and ε/kB = 1040 K for zinc
[20] and σ = 2.551 Å and ε/kB = 857.6 K for alumi-
num. The latter parameters were obtained from the
data on the Young modulus and the crystal lattice
structure (face-centered cubic (fcc) lattice) using the
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method analogous to that described in [21]. Parame-
ters σ12 and ε12 were determined using the simplest
combination relations σ12 =  and ε12 = .

Since the phase trajectories of the system are
locally unstable and mixed in the molecular dynamic
calculation [22, 23], the obtained results must be aver-
aged over the ensemble of independent phase trajecto-
ries. In this study, averaging was carried out over 1000
independent phase trajectories.

The thermal conductivity of a nanofluid (binary
mixture) was calculated based on the f luctuation–dis-
sipation theorem, which connects the thermal con-
ductivity with the correlation function of the corre-
sponding dynamic variables (such relations are usually
referred to as Green–Kubo formulas). The complexity
of the calculation of the thermal conductivity of the
binary mixture under investigation lies in the need to
eliminate the diffusion heat f lux. When this is done,
the thermal conductivity of the nanofluid assumes the
form [24]

(5)

The coefficients that appear in this expression are
equal to the integrals of equilibrium correlation func-
tions

(6)

(7)

Angle brackets in these expressions indicate aver-
aging over the ensemble and τ is the time of achieving
the plateau value [25]. The diffusion flux of nanopar-
ticle (second component) jd2 and heat f lux jQ that
appear in these formulas are defined by the relations

(8)

The last expression contains three different terms,
, , and , which specify the heat f lux associated
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(9)

Here, index α = 1 corresponds to argon atoms; α =
2 corresponds to nanoparticles; mi is the mass of a par-
ticle (atom or nanoparticle); V is the system volume; T
is the temperature of the medium; Φ11, ij are the poten-
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tials of interaction of atoms in the carrier f luid; Φ12, ij
are the potentials of interaction of its atoms and parti-
cles; Φ22, ij are the potentials of interaction of particles;
Fαβ, ij are the corresponding forces; and N1 and N2 are
the numbers of argon atoms and nanoparticles,
respectively.

2. SIMULATION RESULTS

In accordance with relations (5)–(7), the thermal
conductivity being simulated is a function of time. The
value of the thermal conductivity is obtained when the
integration time attains the plateau value of τ, at which
it stops changing. The evolution of function λ(t) (5)
that defines the thermal conductivity is shown in Fig. 1
for a nanofluid with zinc particles of size 2 nm. The
volume concentration of particles was 4.2% and the
mass fraction was 0.208. The time in this case was
measured in the units of τ0 = σ/c, where c is the ther-
mal velocity of molecules of the carrier medium.
The plateau value was attained over time intervals of
about 100τ0.

A typical dependence of relative thermal conduc-
tivity λr = λ/λf  of the same nanofluid as in Fig. 1 on
the volume concentration of nanoparticles (ρ = 0.707,
T = 300 K) is shown in Fig. 2. Here, triangles mark the
results of simulation and dashed line 2 corresponds to
formula (1). The thermal conductivity of the given
nanofluid considerably exceeds the thermal conduc-
tivity of the carrier f luid as well as of coarse-disperse
fluids (1). For example, the thermal conductivity of a
2% nanofluid is almost twice as high as the value given
by formula (1).

The dependence of the thermal conductivity of a
nanofluid for a low (up to 10–15%) concentration of
nanoparticles is usually successfully described by a
quadratic dependence on their volume concentration
ϕ of the form

Fig. 1. Evolution of the thermal conductivity of Ar–Zn
nanofluid, W/(mK), d = 2 nm, ϕ = 4.2%.
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Fig. 2. Dependence of the relative thermal conductivity of
Ar–Zn nanofluid on the volume concentration of
nanoparticles (d = 2 nm).
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(10)

In Fig. 2, this expression corresponds to the dotted
curve 1 (in this case, a1 = 63.1 and a2 = 607.9). The
presence of the second term with the negative sign in
formula (10) indicates that, upon an increase in the
concentration, the thermal conductivity of the nano-
fluid achieves a certain limiting value. As mentioned
above, this was also observed in the experiments. On
the other hand, the thermal conductivity for low con-
centrations of nanoparticles (when the second term in
formula (10) can be omitted) increases linearly with
the concentration. In this case, the relative excess of
thermal conductivity Δ = (λr – 1) is about 20 times
larger than the value predicted by the Maxwell theory.

As follows from relation (5), the thermal conduc-
tivity of a nanofluid is a superposition of two terms.
The first term λ0 is present in both the expression for
the pure f luid (one-component medium) and the
nanofluid, while the second term λd only appear for
the nanofluid. The dependence of these terms on the
volume concentration of particles is shown in Fig. 3.
Here, triangles correspond to the calculation results
and dotted curves are their approximations of

λ = λ λ = + ϕ − ϕ2
1 2/ 1 .r f a a

type (10). The contribution of the diffusion term is
small and decreases beginning with a certain concen-
tration. This is quite natural, since the diffusion of
nanoparticles becomes weaker upon an increase in
their concentration.

To determine the dependence of the thermal con-
ductivity on the nanoparticle diameter, we considered
two nanofluids based on argon with zinc and alumi-
num nanoparticles. In both cases, the volume concen-
tration of nanoparticles was 4.2%, the density of the
carrier f luid was ρ = 0.707, and the temperature was
T = 300 K. The results are shown in Fig. 4. Here, the
squares and curve 1 correspond to the nanofluid with
zinc particles, curve 2 was obtained for the nanofluid
with aluminum nanoparticles, line 3 is the value cal-
culated by formula (1) for suspensions with the same
volume concentration of nanoparticles, and line 4
describes the results for pure argon. The results
obtained for these two nanofluids differ significantly.
The thermal conductivity of the nanofluid with zinc
particles is always substantially higher than the ther-
mal conductivity of the carrier f luid and than the value
determined by formula (1). Conversely, the thermal
conductivity of the nanofluid with aluminum
nanoparticles of size 1 nm is lower than that of the car-
rier f luid. However, the thermal conductivity of a
nanofluid with particle of size 4 nm exceeds the value
determined by formula (1).

In classical theories of the heat conduction of
coarse-dispersed f luids, the material of disperse parti-
cles is taken into account in terms of their thermal

Fig. 3. Dependence of coefficients λ0 and λd (W/mK) on
volume concentration of nanoparticles (d = 2 nm).
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conductivity (see formula (1)). However, the situation
in nanofluids with metal nanoparticles is different.
These particles have a thermal conductivity that
exceeds that of the carrier f luid by several orders of
magnitude (λf ≪ λp); in this case, formula (1) becomes
independent of the particle material and assumes the
simple form λr = (1 + ϕ)/(1 – ϕ). Therefore, classical
theories do not in fact yield the dependence of the
thermal conductivity of disperse f luids on the particle
material. Nevertheless, the results considered here
show that this dependence exists. For example, the
thermal conductivity of Ar–Zn nanofluid with zinc
nanoparticles of diameter 2 nm and a volume concen-
tration of 4.2% is approximately 2.4 times higher than
the corresponding value for the Ar–Al nanofluid.
However, the density of zinc is also higher than the
density of aluminum. Therefore, we can state that the
thermal conductivity of a nanofluid depends on the
particle material (increases with its density).

3. ANALYSIS OF DIFFERENT 
CONTRIBUTIONS TO THERMAL 

CONDUCTIVITY
Analysis of expressions (6)–(9) shows that the

thermal conductivity is determined by a number of
various contributions (heat transfer as a result of
motion of atoms of the f luid and nanoparticles, their
interaction, etc.). To find the reason for the substantial
excess of the thermal conductivity of a nanofluid over
the corresponding value for the carrier f luid, we must
analyze all possible components. The contribution λ0
to thermal conductivity (5) is the sum of six compo-
nents as follows:
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Diffusion contribution λd to (5) can also be repre-
sented analogously as shown below:

(12)

As a result, we can calculate all six contributions to
the thermal conductivity of a nanofluid: kinetic
(superscript K), potential (P), collisional (C),
kinetic–potential (KP), kinetic–collisional (KC), and
potential–collisional (PC) as follows:

(13)

The results of calculations for argon and argon-
based nanofluids with zinc particles of diameters 2 and
4 nm for their volume concentration ϕ = 4.2% and
mass concentration C2 = 0.208 are given in Table 1. The
pressure in nanofluids was equal to the pressure of pure
Ar at density ρ = 0.707 and temperature T = 300 K. The
main contribution to the thermal conductivity of pure
argon comes from coefficients LC (62%), which deter-
mine the energy f lux associated with collisions
between argon atoms, and LKC (22%), which is associ-
ated with the correlation between the kinetic energy
flux and the energy f lux due to collisions. This is not
surprising, since the density of argon is high. In this
case, the kinetic heat transfer (LK) associated with the
motion of molecules is small and amounts to only 8%.

What is the difference between the thermal con-
ductivity structure for a nanofluid and pure argon? It
can be seen from the table that both positive and neg-
ative contributions appear for the studied binary sys-
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tems. Physically, this means that, along with the con-
ventional heat f lux, a f lux matched with the tempera-
ture gradient (negative thermal conductivity) also
appears. As for a pure f luid, the collisional contribu-
tion λC is important; in nanofluids, it is 1.5 times
larger for a nanofluid with a particle diameter of 2 nm
and 3.6 times larger for a nanofluid with a particle
diameter of 4 nm. However, the largest contribution to
the thermal conductivity comes from the term λKC. It
amounts to 50% of the total thermal conductivity for a
nanofluid with 2-nm particles and to almost 80% for a
nanofluid with 4-nm particles. Kinetic contribution
λK is also significant (34% of the total value λ for a
nanofluid with a nanoparticle diameter of 2 nm and
45% for a nanofluid with 4-nm particles). Therefore,
the higher values of the thermal conductivity of a
nanofluid compared to the pure f luid are mainly due
to the considerable increase in the kinetic (λK) and
kinetic–collisional (λKC) contributions.

4. EVOLUTION OF CORRELATION 
FUNCTIONS

To estimate different mechanisms of the elevation
of the thermal conductivity in nanofluids, it is import-
ant to know not only the magnitude of different con-
tributions, but also the dynamics of the corresponding
correlation functions. The evolution of the correlation
functions (t), (t), and (t) of the heat f lux (see
formulas (11)), which make the largest contribution to
the thermal conductivity, is illustrated in Fig. 5. The
top panel corresponds to argon and the bottom panel
for an argon-based nanofluid with zinc particles of
diameter 2 nm (ϕ = 4.2%). The correlation functions
χ(t) are normalized to χK(0) for pure argon, while the
time is normalized to τ0. The correlation functions

(t), (t), and (t) correspond to curves 1, 2, and
3, respectively. For pure argon, all correlation func-
tions decay exponentially rapidly with a characteristic
time on the order of the time of interaction between
molecules. The evolution of the correlation functions
for nanofluids is more complicated. It was shown in
[26] that the autocorrelations velocity function
(ACVF) for a nanoparticle is a superposition of two
exponential functions. The relaxation time of the first
exponential function is on the order of the time of
interaction of a nanoparticle with individual mole-
cules of the carrier f luid, while the relaxation time for
the second function is on the order of the time of inter-
action of a nanoparticle with microscopic f luctuations
of hydrodynamic fields of the carrier medium. The
latter time is usually several times larger than the for-
mer time. The correlation functions that determine
the main contributions to the thermal conductivity of
the nanofluid behave analogously. Their evolution
also occurs in two stages. At the first stage, the relax-
ation time is equal to the relaxation time of the cor-

χK
0 χC

0 χKC
0

χK
0 χC

0 χKC
0

relation functions of the thermal conductivity of the
carrier f luid, but beginning from a time instant of
approximately 2τ0, it is described by a certain relax-
ation time τf.

Let us consider the mechanisms of ACVF relax-
ation of a nanoparticle in greater detail. The kinetic
mechanism is the more effective, the smaller the
nanoparticle size and mass. Even for a particle of
diameter 1–2 nm, its contribution to the total relax-
ation of correlation functions is small. Beginning from
this size, the relaxation of correlation functions of a
nanoparticle occurs predominantly due to its interac-
tion with microfluctuations of the fields of the carrier
fluid. It was shown in [27, 28] that the characteristic
scale lf of these f luctuations is on the order of the
nanoparticle size (at least, for not very coarse parti-
cles). Therefore, relaxation time τf must be on the
order of the time of the interactions of a disperse par-
ticle with a f luctuation, which in turn is determined by

Table 1. Contributions of different terms to thermal con-
ductivity, W/m K

λ Ar Ar–Zn
(d = 2 nm)

Ar–Zn
(d = 4 nm)

λ0 0.282163011 0.807266812

λd 0.0131916228 0.0117404684
λ 0.10680659 0.268971388 0.795526344

0.13939356 0.555674513

0.0478870749 0.199758098

λK 0.00853276 0.0915064848 0.355916415

0.0965082435 0.235437078

0.0023135801 0.000153929297

λC 0.06503381 0.0941946634 0.235283149

0.0163644013 0.10063356

0.0231271266 0.123198502

λP 0.00050646 −0.00676272531 −0.0225649413

0.156042641 0.63243097

0.0210514212 0.0110902883

λK 0.02352531 0.13499122 0.621340682

−0.083342968 −0.464380266

−0.0665579581 −0.313750846

λKP 0.00262643 −0.02207763387 −0.15062942

−0.0388115389 −0.252529043

−0.014629622 −0.00870950256

λPC 0.00658181 −0.0241819169 −0.243819541

λK
0

λK
d

λC
0

λC
d

λP
0

λP
d

λKC
0

λK
d

λKP
0

λKP
d

λKC
0

λPC
0
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ratio τf ~ lf/cp ~ R/cp, where cp is the mean thermal
velocity of a nanoparticle. This time can easily be con-
nected with the time of interaction of molecules as fol-
lows:

(14)

where m and M are the mass of a carrier f luid molecule
and a nanoparticle, respectively.

For nanoparticles considered here, time (14) is at
least an order of magnitude longer than the character-
istic time τ0 of relaxation of carrier f luid molecules. In
particular, this means that the characteristic decay of
all correlation functions that determine the thermal
conductivity of a nanofluid is an order of magnitude
larger than for the carrier f luid. Calculations confirm

τ τ
σ 0~ ~ ~ ,f

p

R R M R M
c c m m

precisely this circumstance (see Fig. 5). A conse-
quence of the slow relaxation of these correlation
functions is considerably higher thermal conductivity
of the nanofluid compared to the corresponding value
for the carrier f luid. Estimate (14) also implies that
relaxation time τf  (and, hence, the thermal conductiv-
ity) increases with the size of nanoparticles and their
density (mass).

CONCLUSIONS
First of all, the molecular dynamics simulation

performed here leads to the conclusion that the ther-
mal conductivity of nanofluids cannot be described by
the Maxwell formula (1) (or its generalizations). The
thermal conductivity of nanofluids with metal parti-
cles is independent of their thermal conductivity and
can generally considerably exceed the value deter-
mined by formula (1). It increases with the particle
concentration, but then attains a certain limiting
value, after which it changes insignificantly. In con-
trast to all classical theories, the thermal conductivity
of a nanofluid also depends on the nanoparticle size
(increases with it). At the same time, in certain situa-
tions, the thermal conductivity of a nanofluid with a
small particle size is not higher (or even lower) than
the values predicted by the Maxwell theory. However,
upon a further increase in the nanoparticle size, the
thermal conductivity of the nanofluid gradually
increases, then becomes higher than the values pre-
dicted by formula (1). Apart from the particle size, the
effect of the elevated thermal conductivity is also
determined by the density of the particle material. This
effect (in particular, lower values of the thermal con-
ductivity) depends on the ratio of the densities of the
particle material and of the carrier f luid. This also fol-
lows from the results of molecular-dynamics simula-
tion for a system of hard spheres [29]. In this connec-
tion with this, it is expedient to note that, with increas-
ing density of the material of particles, their mass
concentration in the nanofluid sharply increases. For
example, in the argon-based nanofluids with alumi-
num particles considered here, for their fixed volume
concentration equal to 4.2%, the mass fraction of alu-
minum particles was 0.09, while the corresponding
value for zinc particles was 0.208. Therefore, the larger
the mass fraction of particles, the higher the excess
values of the thermal conductivity of the nanofluid
over the corresponding value for the carrier f luid.

A generally accepted model of heat conduction of
nanofluid has not been developed as yet despite the
large number of attempts at constructing such a model
(see review [12] and the literature cited therein).
Moreover, the reason for the abnormal excess of the
thermal conductivity of nanofluids over the values
observed for conventional disperse liquids in fact
remain unclear. Various possible reasons have been
discussed by many authors. This was probably done
most systematically by Keblinski et al. [30, 31] and in

Fig. 5. Correlation functions of the heat f lux f luctuations
in pure argon and in Ar–Zn nanofluid.
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the review by Kleinstreuer and Feng [32], where the
contributions of four possible mechanisms were ana-
lyzed. These authors considered the effect of (i) ballis-
tic phonon transport of heat; (ii) the formation of a
fluid layer around nanoparticles, which has an ele-
vated thermal conductivity; (iii) the Brownian move-
ment of nanoparticles; and (iv) their clusterization.
The ballistic phonon mechanism of the formation of
additional increase in thermal conductivity was right-
fully rejected by almost all authors. In our simulation,
this mechanism was disregarded because we treat
nanoparticles as solids in which no energy transfer
occurs.

With regard to the clusterization of nanoparticles,
in principle, it could lead to an increase in the thermal
conductivity. However, the following circumstance
should be borne in mind. If the clusterization takes
place, the f luid acquires particles of a macroscopic
size. However, in this case, the thermal conductivity
must become independent of the nanoparticle size (as
in classical theories) on the one hand, but on the other
hand, these particles should rapidly sediment. Neither
of these effects has been observed in well-staged
experiments (we assume that the average size of
nanoparticles in well-staged experiments remains
unchanged at least during the measuring stage, and the
particle size distribution does not change noticeably).
These nanofluids are undoubtedly used in actual
experiments. This also follows from molecular
dynamics calculations for a system of hard spheres
[29], in which clusterization is ruled out in principle,
but nevertheless a noticeable excess in the thermal
conductivity over the value predicted by the Maxwell
theory is detected. The results of our calculations
based on the potential for soft spheres in the descrip-
tion of the interactions of nanoparticles also confirm
this conclusion.

The Brownian movement of nanoparticles was
repeatedly discussed as a possible mechanism respon-
sible for the higher thermal conductivity of nanofluids
compared to pure f luids. As correctly noted in [30,
31], the direct influence of Brownian movement of
nanoparticles on the thermal conductivity of a nano-
fluid is weak. However, a nanofluid is a binary system
of particles, in which active mutual diffusion of the
components takes place. In this case, the presence of
fluxes formed that apparently determines the main
mechanism of heat conduction in nanofluids. As a
result of the diffusion of nanoparticles and molecules,
the contribution to the thermal conductivity associ-
ated with the f luxes of transferred kinetic energy may
increase by an order of magnitude and even more.

As mentioned above, a layer of molecules of the
carrier f luid with parameters correlated with those for
a nanoparticle is indeed formed around nanoparticles.
The presence of these layers in an ordered f luid sub-
stantially changes the heat f lux associated with the
transfer of the kinetic and potential energies of mole-

cules moving together with a nanoparticle. In the
table, this corresponds to terms λK, λP, and λKP. This
transfer in the nanofluid can indeed increase by more
than an order of magnitude and, in our calculations,
can make a significant contribution to the thermal
conductivity of the nanofluid (the contribution of λK

amounts to 45%).
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