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INTRODUCTION
The results of a theoretical analysis of the profile of

the surface of a small liquid drop in the presence of the
three-phase contact zone are essential for solving a
large number of theoretical and technological prob-
lems [1, 2] (in particular to study the shape of liquid
meniscuses formed during crystal growth in accor-
dance with Stepanov’s method [3]). In this case, a liq-
uid drop of the melt is located between two solid sur-
faces with different properties, e.g., between a molyb-
denum shaping part and a crystalline seed. Different
authors refer to this liquid drop in different terms;
for example, in the Geguzin’s monograph [4], it is
referred to as a crushed drop; in the foreign literature, it
is called a liquid bridge or a capillary bridge; in [5], it
was referred to as an oblate drop; here, we will use the
term liquid bridge.

In one of the first publications devoted to analyzing
liquid bridges, Fortes [6] proposed that two types of
objects be considered; namely, bridges with a fixed
contact contour (r bridges) and bridges with a fixed
wetting angle (θ bridges). Following [7], we can single
out two trends in the study, i.e., (i) the analysis of the
evolution of the shape of liquid bridges and (ii) the
analysis of their stability to small perturbations. In the
literature, liquid bridges between two parallel solid
surfaces [6], between two spheres [8], and between two
axisymmetric solids [7] have been investigated.

Liquid bridges have been investigated using both
asymptotic and numerical methods for solving equa-
tions. In [9], the asymptotic form of the surface of a
horizontal θ bridge was constructed for small Bond

numbers. References to these investigations were cited
in [7, 9].

This study is devoted to the calculation of the shape
of the surface of a vertical liquid θ bridge between two
solid surfaces taking into account the gravity force. We
give a variational formulation of the problem and pro-
pose an algorithm for determining an approximate
solution to the problem for small Bond numbers.

An analysis of the vertical liquid bridge is important
for studying processes that occur when seeding crystals
grown from a melt [3].

1. VERTICAL LIQUID BRIDGE: 
VARIATIONAL FORMULATION 

OF THE PROBLEM
Let us consider a liquid bridge in contact with two

solid plane surfaces (Fig. 1, bottom and top). In this
case, the liquid bridge is a small liquid drop between
two parallel solid surfaces with preset properties
(oblate drop). In view of the proposed axial symmetry,
we will solve the problem of determining the profile of
this drop in the cylindrical system of coordinates (r, z).
The surface tensions between the media are α13, α14,
α34, α23, and α24, respectively. The contact region
between the drop and plane z = 0 (bottom) is a circle
with radius r1, while the contact region between the
drop and plane z =  (top) is a circle of radius r2. We
denote the sought functions that describe the profiles
of the lower (u1(r)) and upper (u2(r)) parts of the drop
as by u1(r) and u2(r). The region separating these parts

ĥ

THEORETICAL AND MATHEMATICAL 
PHYSICS



TECHNICAL PHYSICS  Vol. 62  No. 10  2017

SHAPE OF THE SURFACE OF A VERTICAL LIQUID BRIDGE 1483

(neck) is the circle of radius  (  ≥ 0). Since there are
no physical reasons for the sharpening of the droplet
profile, the tangent to the droplet profile at the point
with abscissa r =  must be vertical, i.e., ( ) = –∞,

( ) = +∞, u1( ) = u2( ). The only exception is the
contact between the sessile and pendent drop at the
same point.

In addition, we assume that wetting angles θ1 and
θ2 do not exceed 90°. Then, our oblate drop (liquid
bridge) has a catenoidal shape  < min(r1, r2), and
u1(r) and u2(r) are single-valued functions.

We assume that the droplet volume is fixed as fol-
lows:

(1)

Let us introduce the functional, which includes the
surface energy and the energy of the gravity force. The
surface energy in turn consists of a component that
corresponds to the free surface of the drop and the
component that corresponds to its contact with a
solid. The functional under investigation can be writ-
ten in the form

(2)

where g is the acceleration due to gravity and ρ is the
density of the liquid.
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Therefore, we obtain the isoperimetric problem:
find the minimum of functional (2) provided that
functional (1) assumes a preset value V. In accordance
with the Euler theorem on isoperimetric problems, we
introduce the extended functional (λ is a Lagrange
multiplier)

(3)

where

Performing the variations in the extended func-
tional, we obtain two Euler equations and two trans-
versality conditions. Let us introduce dimensionless
variables ξ = r/V1/3, wi = ui/V1/3, i = 1, 2, and dimen-
sionless parameters μ = λV1/3/α34 (sought quantity),
h = /V1/3, B = gρV2/3/α34 (preset quantities). Dimen-
sionless constant B is the Bond number.

The problem can be formulated in dimensionless
form as follows:

the Euler equations are

(4)

(5)

the transversality conditions are

(6)

(7)

the conditions of contacts of the liquid bridge with the
bottom and top are

(8)
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Fig. 1. Liquid bridge (in the given case, a drop between two
parallel solid surfaces): (1, 2) solid media, (3) liquid
medium, and (4) gaseous medium; θ1, θ2 are wetting
angles.
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the continuity condition for the bridge profile at the
neck is

(10)

the verticality condition for the tangent at the neck is

(11)

and the volume conservation law is

(12)

2. ALGORITHM OF THE SOLUTION

To simplify the dependence on the lower limit in
the integrals that appear in Eq. (12) and analogous
integrals, we introduce the renormalization of the
argument, sought functions, and parameters as fol-
lows:

(i) new independent variable η = ξ/ ;

(ii) new sought functions vi(η) = wi(ξ)/ , i = 1, 2;

(iii) new parameters H = h/ , b = B( )2 (b is the
modified Bond number); and

(iv) new Lagrange multiplier M = μ .

In the new dimensionless variables, Eqs. (4) and
(5) assume the form

(13)

(14)

Integrating these equations, we obtain

(15)

(16)

Passing in Eqs. (15) and (16) to the limit for η → 1,
we obtain constants C1 and C2: C1 = –1 and C2 = 1.
Dividing both sides of Eqs. (15) and (16) by η, we
reduce these equations to the form
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Functions Φ1 and Φ2 introduced above must satisfy
the inequalities 0 < Φ1 ≤ 1 and 0 < Φ2 ≤ 1. Solving
Eqs. (17) and (18) for derivatives, we arrive at the fol-
lowing equations:

(19)

Relations (17) and (18) imply that Φ1 (1) = Φ2(1) = 1,
while Eqs. (19) lead to

i.e., to the fulfillment of conditions (11). In the vicinity
of point η = 1, functions Φ1 and Φ2 can be represented
in the form Φi(η) = 1 + βi(η – 1) + o(η – 1), i = 1, 2;
therefore, the singularities on the right-hand sides of
Eqs. (19) are integrable,

(20)

In this case, analogs of the conditions of contact of
the liquid bridge with the bottom and top are satisfied:
v1(η1) = 0, v2(η2) = H. Satisfying the analog of condi-
tion (10), we arrive at the relation

(21)
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we arrive at the relations

(24)

(25)

Assuming temporarily that the terms containing
factor b are known, we can solve Eqs. (24), (25) as
quadratic equations in η1, η2 and obtain, respectively,

(26)

(27)

Let us write the volume conservation condition (12)
in new variables:

(28)

Integrating by parts, we reduce this relation to the
form

(29)

As a result, we obtain nonlinear system of four
equations (21), (24), (25), (29) for determining four
parameters η1, η2, , and M.

The last sought parameter M is the modified
Lagrange multiplier. Substituting the upper integra-
tion limits η1(M) and η2(M) into formula (21), we
arrive at the relation
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Then, we can find M from the preset value of H by
inverting function (30).
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We propose that the iteration method be used for
finding the solution to the problem. Namely,

1. We specify the value of parameter M, determine
the roots of quadratic equations (24) and (25) under
the assumption that b = 0, and determine , H, and
functions v1 and v2 determining the profile of the lat-
eral surface of the liquid bridge at the first state of iter-
ation process.

2. We calculate the value of b = B( )2 and perform
the above procedure, but now taking into account the
determined functions v1 and v2. It is the second step of
the iteration process. Further, we take the third step,
and so on until the required accuracy of calculations is
reached.

We cover the entire range of admissible values of
parameter M (see below) and construct the depen-
dence of the dimensionless height of the liquid bridge
on this parameter. To determine the shape of the lat-
eral surface of the liquid bridge of preset height h, we
determine the corresponding values of parameter M
using the plotted dependence h(M) and perform the
above calculations for these values.

It should be noted at the very outset that the maxi-
mal number of such values is four (four different pro-
files of the bridge). If the height exceeds hmax (hmax is
the maximal height of the liquid bridge), there are no
solutions.

3. VERTICAL LIQUID BRIDGE 
IN ZERO GRAVITY CONDITIONS 

(FIRST STEP OF ITERATION PROCESS)
Let us suppose that the Bond number is zero. We

determine the range of admissible values of parameter
M. If the values of parameter M are positive, we have
two real-valued roots of different signs for each of
Eqs. (24), (25) and choose positive roots ,  because
we cannot pass through zero point in evaluating the inte-
grals (see the form of functions Φi(η), i = 1, 2).

Let us now consider the case with negative values of
parameter M. An analysis of the discriminants of the
quadratic equations shows that the real-valued roots
exist in regions (a) max{–1 + α1, –1 + α2} ≤ M < 0 and
(b) M ≤ min{–1 – α1, –1 – α2}. In region (b), the roots
of equations (24) and (25) are smaller than unity and

 < 0 (see expression (29)). Consequently, physically
meaningful solutions exist only in region (a). There-
fore, for negative values of parameter M, it is sufficient
to confine analysis to interval (a). In this region, each
value of parameter M corresponds to four roots of
Eqs. (24), (25), which lie in the region (+1, +∞), and
four values of parameter h.

Let us describe the first step of the iteration process
(first iteration) in greater detail. Thus,

1. We specify the value of parameter M from the
range of admissible values.

ξ*

ξ*

+η1
+η2

ξ 0*
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2. We find positive roots of Eqs. (24), (25) for b =
0. If M > 0, there are two roots,  and  (see expres-
sions (26) and (27)); however, if M belongs to region
(a), there are four roots and, hence, four correspond-
ing variants of the choice of the roots for further calcu-
lations appear, namely, version (++) with root  of
Eq. (24) and root  of Eq. (25); version (+–) with roots

 and , version (–+), and finally version (– –).
3. For each of the possible variants for choosing

positive roots of quadratic equations (24), (25), we
calculate  using expression (29) and taking into
account the fact that Φ1(η) = Φ2(η) = Φ(η) = [1 –
0.5M(η2 – 1)]/η.

4. We determine H using formula (21) and func-
tions v1(η) and v2(η) using formulas (20).

5. We return to the initial dimensionless variables
and determine ξ1, ξ2, h, and then functions w1(ξ) =
v1(ξ/ ) , w2(ξ) = v2(ξ/ )  describing the profile
of the liquid bridge in each variant in the first approx-
imation.

Further, we plot the graphs of dimensionless height
of the liquid bridge as a function of parameter M. For
α1 = 0.5 and α2 = 0.7, this dependence is plotted in
Fig. 2.

It can be seen that, in the region of positive values
of parameter M increasing from zero to +∞, height h
of the liquid bridge decreases monotonically from its
value at M = 0 to zero. In the range of negative values
of this parameter, there exist four branches ((++),
(+–), (–+), and (– –)) corresponding to different
variants of the choice of the roots of the quadratic
equations. In addition, it can be seen from the graph
that small values of h correspond to only one value of
parameter M and, hence, only one liquid bridge pro-
file.

Thus, a fixed value of h at the first step of the itera-
tion process can correspond to four different

profiles of the drop (maximal number of branches).
This situation is illustrated in Fig. 3. It shows four dif-
ferent profiles of the liquid bridge, which correspond
to the same value of dimensionless height h = 1 (we
consider the symmetric case when α1 = α2 = 0.5).

4. VERTICAL LIQUID BRIDGE (SECOND STEP 
OF ITERATION PROCESS)

Let us now describe the second step of the iteration
process (second iteration). At this stage, we take into
account the action of the force of gravity on a vertical
liquid bridge.

The second step of the iteration process presumes
the following operations.

1. For the same preset value of parameter M, we
determine positive roots of Eqs. (24) and (25) using

+η1
+η2

+η1
+η2

+η1
−η2

ξ*

ξ* ξ* ξ* ξ*

relations (26) and (27). Quantities , η1, and η2, as
well as functions v1(η) and v2(η), are taken from the
results of calculations in the first approximation.

2. For each new variant of the choice of the roots,
we calculate new value of  by formula (29) (func-
tions Φ1(η) and Φ2(η) are defined by formulas (17)
and (18)).

3. We determine H by formula (21) and functions
v1(η) and v2(η) by formulas (20).

4. We return to the initial dimensionless variables
and find ξ1, ξ2, h, and then functions w1(ξ) =
v1(ξ/ )  and w2(ξ) = v2(ξ/ )  that describe the
liquid bridge profile in each variant in the second
approximation.

The next iterations can be performed in accordance
with the same algorithm as the second iteration.

As an example, we calculate the liquid bridge pro-
files taking into account one and two iterations. The
results of calculations in the variant (++) for α1 = 0.5,
α2 = 0.7, and M = –0.273 are shown in Fig. 4. It can
be seen that the inclusion of the second iteration for
small values of parameter b changes the solution insig-
nificantly.

5. ASYMPTOTIC FORM OF THE SOLUTION
IN THE VICINITY OF POINT M = 0

AND THE SEARCH FOR THE MAXIMAL 
POSSIBLE LIQUID BRIDGE HEIGHT

Let us construct the asymptotic form of the solu-
tion obtained as a result on one step of the iterative
process (for b = 0) in the vicinity of point M = 0. In the
case of strong wetting, this point is the left boundary of

ξ*

ξ*

ξ* ξ* ξ* ξ*

Fig. 2. Dependence of liquid bridge height h on parameter
M for α1 = 0.5 and α2 = 0.7. Curve 1 corresponds to variant
(++) of the choice of the roots of Eqs. (24), (25); curves
2–4 correspond to variants (+–), (–+), and (– –),
respectively.
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the range of admissible values of parameter M. The
asymptotic forms are different in different variants of the
choice of roots for quadratic equations (24) and (25).

Let us consider variant (++) and assume that
parameter M → 0. In this case, auxiliary function Φ
can be approximated as follows: Φ(η) = 1/η. Integrat-
ing in expressions (29) and (21) and assuming that

we obtain approximate relations

(31)

− −η − α η − α2 1/2 2 1/2
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Fig. 3. Four different profiles of the liquid bridge, corresponding to the same height h = 1.0 for α1 = α2 = 0.5. (a) Variant (++),
M = –0.36; (b) (+–), M = –0.216; (c) (–+), M = –0.216; and (d) (– –), M = –0.019.
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In addition, we can obtain approximate expres-
sions from (20) that describe the shape of the lateral
surface of a liquid bridge as follows:

(32)

Variants (+–), (–+), and (– –) are only realized
for negative values of parameter M; we will consider
the case when M → –0. In this case, a more accurate
approximation of the integrands in expressions (21)
and (29) is required, namely,

Then, for variant (+–), we obtain

(33)

For variant (–+) (M → –0), we have

(34)

For variants (– –) (M → –0), we can write

(35)

Figure 5 shows the dependence of quantity H on
parameter M for α1 = 0.5 and α2 = 0.7 for four variants
of the choice of the roots of quadratic equations
(branches (++), (+–), (–+), and (– –)). It can be
seen that the behavior of the curves in the vicinity of
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point M = 0 corresponds to the above asymptotic form
of the solution.

Let us now consider the case of strong wetting
(small wetting angle) on at least one of the solid sur-
faces. Let us suppose that, e.g., θ1 → 0 and, hence,
α1 → 1. Then, region (a) obviously shrinks to a point,
the left boundary of the range of admissible values of
parameter M is point M = 0, and variant (++) is real-
ized. Relations (31) in this case (for M = 0, α1 → 1)
give

(36)

It can be seen that  → 0, ξ1 → +∞, ξ2 → 0, h →
0 for α1 → 1.

Let us now consider the maximal value of dimen-
sionless height h of a liquid bridge between two solid
planes. It is clear from general considerations that this
value can only be attained for wetting angles θ1 and θ2
that tend to π/2. The above dependence of h on
parameter M for b = 0 (see Fig. 2) shows that the
maximal value of the bridge height is achieved in
variant (– –). It should be noted that the same config-
uration of branches is also observed for α1 = α2 → 0.
Analyzing the results of numerical calculations for
variant (– –) at b = 0, α1 = α2 = 0, and M → –1, we
find the maximal value of h, which is hmax ≈ 2.325.

The integrals in expressions (21) and (29) can be
expressed in terms of elliptic integrals of the first and
second kind as follows:

−ξ π − α − − α2/3 1/3 1/3
1 1~ (2) ( ) (1 ) , ~ 0.5 ln(1 ),* H

−

− −

− π − α − α
ξ π − α

1/3 1/3
1 1

1/6 1/3 1/6
1 1

~ (2 ) (1 ) ln(1 ),

~ (2) ( ) (1 ) ,

h

− −ξ π − α − α2/3 1/3 2 1/2 1/3
2 2 1~ (2) ( ) (1 ) (1 ) .

ξ*

Fig. 5. Dependence of quantity H on parameter M for α1 =
0.5, α2 = 0.7. Curve 1 corresponds to variant (++) of the
choice of the roots of Eqs. (24), (25); curves 2–4 corre-
spond to variants (+–), (–+), and (– –), respectively.
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(37)

where

F(ϕ, k), E(ϕ, k) are the elliptic integrals of the first and
second kind in the Legendre form, and k is their mod-
ulus (in our case, k = 2 /(1 + δ) [10]).

Using these representations, we can find the
expression for the maximal height of the liquid bridge,
which was determined numerically as follows:

CONCLUSIONS
We have proposed a variational formulation of the

problem of a vertical liquid bridge between two parallel
solid planes taking into account the force of gravity in
the axisymmetric case (in cylindrical system of coordi-
nates). We have constructed an iterative process for
obtaining an approximate solution to this problem
under the assumption of smallness of the Bond num-
ber. It is shown that the inclusion of the second itera-
tion step for small values of the modified Bond num-

ber does not change significantly the shape of the liq-
uid bridge profile.

We have discovered that there is no unique solu-
tion: for a fixed liquid bridge height (distance between
the bottom and top), several solutions can exist (sev-
eral different profiles of the lateral surface of the drop),
the maximal number of such solutions being four. For
liquid bridge heights exceeding the value h = hmax,
solutions do not exist. For heights below a certain
value, there is only one profile of the surface.

In the case of strong wetting, we have constructed
the asymptotic expression for shape of the surface of
the liquid bridge in the vicinity of the left boundary of
admissible values region of parameter M. We have
determined the maximal height of the vertical bridge
at the first step of the iterative process.
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