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Abstract—The influence of elastic scattering on the ion distribution function in the plasma of an intrinsic gas
in weak fields has been considered. An analytical expression valid for cryogenic temperatures of atoms has
been obtained. The reduced He+–He, Ar+–Ar mobilities as functions of the temperature of atoms in a range
of 4–1000 K have been calculated in the approximation of the zero field taking into account elastic collisions;
the calculated dependences well agree with the available experimental data. It has been demonstrated that
elastic collisions play an important role in the formation of the ion distribution function at low temperatures.
The results of measurement of the ion mobility in the limit of the zero field at low temperatures can be used
to obtain data on the ratio of elastic scattering and resonance charge exchange cross sections.
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INTRODUCTION

The influence of elastic collisions on ion drift in
the plasma of intrinsic gas in a strong field was consid-
ered earlier [1, 2]. It was found out that elastic colli-
sions weakly influence the ion drift along the field and
considerably impact the drift characteristic across the
electric field. This was explained by the fact that in
strong fields when average ion energies are large, as
compared to the temperature of atoms, the elastic
scattering cross section turns out to be much smaller
than the resonance charge exchange cross section,
thus, this collision type insignificantly influences the
ion mobility. At the same time, elastic collisions
(although rather rare) transform part of the energy
acquired by the ion in the electric field into the energy
of ion motion in the plane orthogonal to the electric
field. This has a decisive influence on the growth of
the ion transverse diffusion coefficient with increasing
field, which, in the absence of elastic collisions, is
determined by the temperature of atoms. It is known
that the elastic scattering cross section increases with
reducing relative energy of colliding particles much
faster than the resonance charge exchange cross sec-
tion [3–5]. For small fields, when the ion energy is on
the order of the average thermal energy of atoms, at
low gas temperature, the cross sections can be on the
same order of magnitude [5, 6]. Thus, the influence of

elastic collisions in the case of weak fields on the ion
distribution function can be quite substantial.

From a physical point of view, the influence of
elastic collisions on the ion distribution function in an
intrinsic gas at weak fields is quite clear. Indeed, under
these conditions, the ion distribution function is close
to Maxwellian. The presence of a weak electric field
and resonance charge exchange results in the anisot-
ropy of the ion distribution function (extended along
the field), and the value of this perturbation depends
on the ion energy according to a certain law [6, 7].
Elastic collisions implying energy transfer in all direc-
tions of ion motion obviously result in the isotropiza-
tion of the ion distribution function, i.e., the reduction
of perturbation of the Maxwellian distribution.

The ion drift in the intrinsic gas for small fields was
theoretically studied by many authors [8–11], the
results are given in detail in [11]. Most of these studies
were based on various approximations of the Chap-
man–Enskog theory [12] for the drift velocity or
mobility in the limit of the zero field.

The ion distribution function in an intrinsic gas at
weak fields was studied in [6, 7]. In the first of these
studies; however, elastic collisions were taken into
account by estimating their influence at room tem-
perature and, in the second one, they were not taken
into account at all. In [7], the cross section of the res-
onance charge exchange was assumed to be constant.
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It will be shown below that, for low temperatures of
atoms taking into account elastic collisions is import-
ant when calculating the ion distribution function in
an intrinsic gas.

Let us consider the problem of finding the ion dis-
tribution function in a plasma of an intrinsic gas in a
weak field taking into account the dependence of the
resonance charge exchange and elastic scattering cross
sections on the relative energies of the ion and the
atom.

BASIC RELATIONS

To solve the formulated problem, it is necessary to
choose the model of the differential scattering cross
section at the ion collision with the intrinsic atom tak-
ing into account the resonance charge exchange and
elastic scattering. It was indicated in a number of
papers that “isotropic in the center-of-mass system,
elastic scattering cross section” well describes this sit-
uation [3, 5, 13]. Then, we take the function σθ(ε, θ) as
the differential scattering cross section as follows:

(1)

where ε, θ are the energy of relative motion in the cen-
ter of mass and the scattering angle in this system,
respectively; σb(ε) is the so called backscattering cross
section; and σi(ε) is the isotropic scattering cross sec-
tion. Note that the cross section σb(ε) is not the reso-
nance charge exchange cross section. Let us find σb(ε)
and σi(ε) using the experimental and (or) quantum
mechanically calculated diffusion cross section (or the
momentum transfer cross section) σm(ε) and the
energy transfer cross section (or the viscosity cross
section) σv(ε),

(2)

Taking into account that with high accuracy [11]

(3)

where σc is the resonance charge exchange cross sec-
tion, we obtain from (2) that

(4)

Thus, the backscattering cross section σb is equal to
the resonance charge exchange cross section for σi = 0.

Let us consider the steady-state ion velocity distri-
bution under the following conditions:

(i) atoms of the gas move according to the Max-
well law;
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(ii) ion motion takes place in the intrinsic gas with
a low degree of ionization;

(iii) the dominant processes that form the ion
velocity distribution function are the resonance charge
exchange and elastic collisions of ions with atoms;

(iv) the plasma is homogeneous;

(v) the average ion energy is close to the average
thermal energy of atoms.

In the steady-state plasma under the above
assumptions the Boltzmann equation has the form

(5)

where e, m are the ion charge and mass; E is the elec-
tric field strength; fi is the ion velocity distribution
function; and Si is the collision integral, which can be
split into two terms Sci and Sei. The first term corre-
sponds to backscattering (in the center of mass system)
and the second term corresponds to isotropic (in the
center of mass system) scattering of the ion on the
intrinsic atom. Let us consider first Sci. Taking into
account that the ion produced in the charge exchange
process has the velocity of the atom, let us determine
the collision integral as follows [2, 6]:

(6)

where vi is the ion velocity, va is the atom velocity,
fa(va) is the Maxwellian atom velocity distribution
function (normalized to unity), and vr is the absolute
value of the relative velocity of the ion and the atom
before the collision; the ion distribution function is
normalized to concentration. It is known that the res-
onance charge exchange cross section σc in the energy
range up to several electronvolt weakly depends on the
relative energy of the ion and the atom. It was shown
in [1, 2] that the ion distribution function with con-
stant σc can be used to obtain the solution to the Boltz-
mann equation taking into account this dependence.
Therefore, first, let us solve the formulated problem
for constant resonance charge exchange cross section
and then formulate the rules for taking into account
the dependence σc on the relative energy of colliding
particles.

It was demonstrated in [1, 14] that to notation the
expressions for S1ci(vi), S2ci(vi) have the form
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Here, erf(x) = (–t2)dt, β =  w0e(vi)

are the relative velocities of the ion and the atom aver-
aged over the atom distribution function, k, Ta are the
Boltzmann constant and the temperature of atoms,
respectively.

Let us consider the collision integral Sei corre-
sponding to isotropic in the center of mass system
scattering of the ion on the intrinsic atom. Collisions
in which the ion is deflected to small angles due to the
interaction of the ion charge and the induced electric
moment of the atom which take place at large impact
parameters weakly influence the ion distribution
function, since they slightly change the velocity [15],
therefore, they will not be taken into account. More-
over, for small ion energies, polarization capture can
take place [11]. In this case, the corresponding differ-
ential cross section is probably close to isotropic in the
center of mass system.

Then, taking into account that, before the colli-
sion, the atom moves with the arbitrary velocity va, the
probability density ge(  → vi; va) that the ion with the
velocity  acquires the velocity vi in collision with the
ion can be written as [14]

(8)

where ξ = vi – ; ξ = |vi – |.
For Sei, we have

(8a)

Integrating (8a) over va and taking into account the
weak dependence of the cross section σi(vr( )) on the
velocity, as compared to the Maxwellian function, we
obtain [14]

(8b)

where

(9)

Introducing the dimensionless velocity x = vi ,
β = m/2kTa, we write Eq. (5), integrated over va in the
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where ε0 =  ≪ 1, μ = cosθ, θ is the angle

between the ion velocity and the electric field vector,
(x) = w0e(x/ ), (x' → x) = β1.5we(x'/  →

x/ ). It was shown in [1, 2] that, if the charge exchange
cross section is approximated by the formula [12]

(11)

where Ec is the energy of relative motion of the ion and
the atom, taking into account the weak dependence of
the charge exchange cross section on the relative
velocity of the ion and the atom is reduced with suffi-
cient accuracy to the replacement of the cross section
σc by σ0ck(x), where

(11a)

and the dimensionless velocity x0 corresponds to the
energy of relative motion of the ion and the atom equal
to 1 eV. Finally, we have

(11b)

where the parameter ε0 is determined for an energy of

1 eV, ke(x) = , σ =  is the ratio of

elastic scattering and resonance charge exchange cross
sections for the energy of relative motion in the center
of mass system equal to 1 eV.

Since for weak electric fields, the ion distribution
function is weakly anisotropic, we use the method of
spherical harmonics [14] to solve Eq. (11b). The only
complication is that this equation represents a singu-
larly perturbed integro-differential equation with the
small parameter ε0 at the highest derivative [16, 17].
The solution to this equation is obtained in the Appen-
dix in the following form:

(12)

where F11(x) is defined by formulas (A5).
For mobility in the limit of the zero field, we have

(see (A5))
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(13)

where m is the ion mass in a.m.u.

DISCUSSION OF RESULTS
It was already mentioned above that the ion drift in

the intrinsic gas in weak fields was studied by many
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authors. Let us compare our results with some of the
previously published data. It was obtained in [6, 12]
that, without taking into account elastic collisions, the
drift ion velocity is given by the following expressions,
respectively:

A similar relation obtained using (x) yields the
numerical coefficient in this formula equal to 0.343,
which weakly depends on the temperature of atoms
and the parameter a in (11a).

Figure 1 shows the results of comparison of the
correction to the Maxwellian ion distribution function
gi(x) = 2π (x)σ = 0, i = 1, 2, calculated using the
obtained relations in the assumption of constant
charge exchange cross section (a = 0) and absence of
elastic collisions, and the similar functions g(x), gx(x)
calculated in [6] and [7], respectively. It can be seen
that, first, these functions are close and second, the
first approximation g1(x) hardly differs from the sec-
ond one g2(x) (see Appendix). Thus, it can be stated
that the obtained results for the ion distribution func-
tion in the intrinsic gas and weak fields agree well in
particular cases with the data obtained by other
authors.

Figure 2 shows the calculated ion distribution
functions g1(x) and g2(x) without account of elastic
collisions for He+–He and Xe+–Xe. Formula (11)
with the data from [18] was used for calculation of the
resonance charge exchange cross section. Similar to
the previous case, it can be seen that the second
approximation practically coincides with the first one.
Moreover, it follows from these results that the form of
g(x) weakly depends on the charge exchange cross sec-
tion.

We also calculated the dependences of reduced

zero field mobility K0 =   K for He+ and

Ar+ ions in the intrinsic gases on the gas temperature
in a range from cryogenic temperatures to 1000 K.
These gases were chosen because there are reliable
data on elastic scattering cross sections in a wide range
of relative energies of the atom and the ion [5, 19, 20].
The results for He+ and Ar+ are shown in Figs. 3 and
4, respectively. Figure 3 shows the experimental data
from [21–27] and the results of calculations from
[28, 29]. It was demonstrated in [21] that the depen-
dence of reduced mobility for He+ in He on the gas
temperature can be obtained from the dependence of
this quantity on the parameter E/N if the effective
temperature Teff is used as the gas temperature; this
effective temperature for He should be calculated
using the formula
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Fig. 1. Perturbations of the Maxwellian ion distribution
function without account of elastic collisions in a weak
field for constant resonance charge exchange cross section:
(1) g1(x) is the first approximation, (2) g2(x) is the second
approximation, (3) g(x) is the approximate solution from
[6], and (4) gx(x) is the solution from [7].
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Fig. 2. Perturbations of the Maxwellian ion distribution
function without account of elastic collisions in a weak
field: (1) g1(x) is the first approximation for the He+–He
case, (2) g2(x) is the second approximation for the He+–
He case, (3) g1(x) is the first approximation for the Xe+–
Xe case, (4) g1(x) is the first approximation for the Xe+–
Xe case. Parameters of cross sections of the resonance
charge exchange are taken from [18].
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(14)

where Teff, Ta are taken in kelvins, mHe is the mass of
He atom in a.m.u., the reduced mobility K0 is
expressed in cm2/V s, and E/N is expressed in Td. The
experimental data from [21] on He+ mobility in He as
a function of E/N is recalculated using formula (14)
are also shown in Fig. 3. Here, the results of our calcu-
lations of the resonance charge exchange cross section
according to (11) with the parameters taken from [18]
and the correction for deviation of the trajectories of
colliding particles from straight lines at small relative
energies of the ion and the atom in the form of the fac-

tor , where R0 =  [30] and the param-

eter σ = 0.31 are also shown. This correction is neces-
sary, since the calculations included cryogenic tem-
peratures for which this correction may play a
substantial role. Moreover, it was taken into account
that, for small energies of relative motion, the reso-
nance charge exchange cross section becomes equal to
one-half of the polarization capture cross section [30].
The energy transfer cross section given in [29] is well
approximated by the formula

(15)

It follows from these relations and (4) that σ = 1.
However, the value of this parameter found from the
condition of best matching with the experimental data
is σ = 0.31. This can be explained as follows: experi-
mental data [20] indicate that the differential cross
section of elastic scattering for He+ ion on He atom for
energies on the order of 1 eV has a pronounced maxi-
mum at small scattering angles. This circumstance
increases the integral elastic scattering cross section,
but hardly influences the ion mobility, since it corre-
sponds to scattering with small ion momentum and
energy variation. Thus, if the differential cross section
of ion scattering on an intrinsic atom is approximate
according to (1), i.e., without taking into account the
maximum at small scattering angles, the integral scat-
tering cross section should be taken to be smaller than
the real one. This fact explains why the ratio of elastic
scattering and charge exchange cross sections at 1 eV
found from the best match between calculations and
the experiment is smaller than that obtained from
quantum mechanical calculations [29].

Figure 4 shows the data on reduced zero field
mobility for Ar+ in Ar calculated for different charge
exchange cross sections. The calculations were per-
formed for the resonance charge exchange cross sec-
tion taken from [18] and the elastic cross section taken
from [30] (Fig. 4, curve 3). In the other variant, the
resonance charge exchange cross section was deter-
mined from relation (3) with the momentum transfer
cross section σm and the elastic scattering cross section
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taken from [31] (Fig. 4, curve 1). In both cases, the
parameter σ was not varied, but calculated using the
known cross sections [18, 31], it was equal to σ =
0.514, 0.488, respectively. This figure also shows the
results of calculations using the same resonance
charge exchange cross sections but without account of

Fig. 3. Ion He+ mobility K0 in He as a function of tempera-
ture of atoms: (1) calculation [28], (2) experiment [21],
(3) experiment [22], (4) calculation [29], (5) experiment
[23], (6) experiment [24], (7) experiment [25], (8) experi-
ment [26], (9) calculation using the obtained formulas, He
scattering cross sections from [18, 29], and σ = 0.31,
(10) recalculated data [29] using Teff (see formula (14)), and
(11) recalculated data [21] using Teff (see formula (14)).
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Fig. 4. Ion Ar+ mobility in Ar as a function of temperature
of atoms: (1) calculation using the obtained formulas,
charge exchange and elastic scattering cross sections from
[31], and σ = 0.488, (2) same as (1) but for σ = 0, (3) cal-
culation using the obtained formulas, charge exchange
cross section from [18], elastic scattering cross section
from [31], and σ = 0.514, (4) same as (3) but for σ = 0,
(5) experiment [32], (6) experiment [24], (7) experiment
[33], (8) calculation [36], (9) experiment [34], (10) exper-
iment [11], and (11) experiment [35].
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elastic scattering. It can be seen from these data that,
since the resonance charge exchange cross section
given in [18] is larger than that calculated using the
data from [31] on σm, curve 3 is noticeably higher than
curve 1. Moreover, in the low temperature region (for
Ta < 30 K), the calculated mobilities depend on the
temperature of atoms in a different way. This is proba-
bly also connected with the different temperature
dependence of the charge exchange cross sections
given in [18] and calculated using the diffusion cross
section from [31] at low relative energies of the ion and
the atom. Concerning the agreement between calcula-
tions and experimental data, on the whole, calcula-
tions according to [31] better agree with experiment.
However, it should be noted that the data on mobility
of Ar+ ions in Ar differ noticeably in [11, 24, 32–36].

It should also be emphasized that it can be seen
from the curves in Fig. 4 that neglecting elastic scatter-
ing results in a considerable error in calculating the
mobility at temperatures below 300 K, and this error
increases with decreasing temperature of the atoms. It
is clear that the reason for this is the sharper growth in
the elastic scattering cross section with decreasing rel-
ative energy of the ion and the atom (which at the zero
field is determined by the temperature of atoms) com-
pared to the resonance charge exchange cross section.
It should also be noted that, while for better agreement
of the calculated He+ mobility in He with the experi-
ment, we had to take the parameter σ smaller than the
ratio of the applied elastic cross section and the cross

section of resonance charge exchange (for the reason
explained above), for argon this was not required, and
the parameter σ was taken from the cross section ratio.
The reason for this difference is that, as follows from a
comparison of the data on differential cross sections of
elastic Ar+ ion scattering on Ar atoms [3] and He+ ion
on He atoms [20], for an energy of relative motion of
the ion and the atom of about 1 eV (for which the
parameter σ is calculated) in the first case, the cross
section is close to isotropic in the center of mass sys-
tem, while in the second case there is a noticeable
maximum at small scattering angles. As was already
mentioned above, the latter circumstance reduces the
contribution of isotropic scattering of He+ ion, which
results in the requirement to reduce the parameter σ,
since elastic scattering at small angles does not influ-
ence the ion mobility.

Figure 5 shows the results of calculation of the
function g2(x) without account of elastic collisions for
He+–He and the function g2el(x) calculated taking into
account elastic collisions for He+–He at different gas
temperatures Ta = 10, 76, 1000 K and σ = 0.31. As
expected, taking into account elastic collisions reduces
the correction of the ion distribution function to the
Maxwellian function caused by the presence of the
electric field and the process of resonance charge
exchange, since it first results in the isotropization of
the ion distribution function and, second, in the addi-
tional energy exchange between atoms and ions.
Moreover, unlike the function g2(x) (calculated taking
into account resonance charge exchange only), which
weakly depends on the gas temperature, the influence
on the ion distribution function g2el(x) of elastic colli-
sions increases with reducing temperature. In the con-
sidered He+–He case at 10 K, g2el(x) decreases by a
factor of approximately three compared to the correc-
tion calculated without taking into account elastic col-
lisions. This is probably determined by the fact that, at
low temperatures, the ratio of elastic scattering and
cross sections of resonance charge exchange increases
noticeably.

Thus, it can be concluded that the ion mobility in
the intrinsic gas at low temperatures is sensitive to the
ratio of elastic scattering and resonance charge
exchange cross sections, and the obtained formulas
can be used to find the energy dependence of this ratio
from experimental data.

CONCLUSIONS

Let us summarize the main results of the study:

(i) The expression for the ion distribution function
in weak fields in an intrinsic gas was obtained. This
expression takes into account elastic ion collisions
with atoms, along with resonance charge exchange. It
was demonstrated that elastic collisions result in a

Fig. 5. Influence of elastic collisions on the form of the ion
distribution function perturbation in a weak field for the
He+–He case, different atomic temperature, and σ = 0.31:
(1) gel(x) is the second approximation taking into account
elastic collisions Ta = 1000 K, (2) gel(x) is the second
approximation taking into account elastic collisions Ta =
76 K, (3) gel(x) is the second approximation taking into
account elastic collisions Ta = 10 K, (4) g2(x) is the second
approximation without account of elastic collisions. Cross
sections of both resonance charge exchange and elastic
scattering are taken from [18, 29].
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smaller deviation of the ion distribution function from
the Maxwellian one.

(ii) The calculations of the drift velocity and mobil-
ity using the obtained formulas neglecting elastic col-
lisions agree well with the theoretical calculations
made by other authors.

(iii) The temperature dependences of zero field
He+ and Ar+ ion mobilities in the intrinsic gases were
calculated for a gas temperature range of 4–1000 K.
The calculated dependences well describe the avail-
able experimental data. Unlike the case of strong and
moderate fields, neglecting elastic ion collisions with
atoms results in the considerable overestimation of the
calculated mobility, especially at cryogenic tempera-
tures.

(iv) The results of a comparison of the calculated
and experimental mobilities at low temperatures can
be used to reconstruct the ratios of the cross sections
of elastic ion scattering on atom and resonance charge
exchange.

APPENDIX

Equation (11b) represents a singularly perturbed
integro-differential equation with the small parameter
ε0 at the highest derivative [16]. The proof of closeness
of its approximate solution obtained by expansion over
the small parameter requires a special examination.
Therefore, to find this solution, we use the well-
known multiscale method [17], which can be applied
to solve singularly perturbed equations. Introducing
the variables x1 = x, τ = x/ε0 instead of x, we obtain the
integro-differential equation regular with respect to
the small parameter ε0, and its solution can be sought
in the form of an expansion into a power series over

this small parameter. Taking into account that  =

 + , for the first two terms of this expansion,

we obtain
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To solve system (A1), we take into account that, for
weak fields, the ion distribution function is close to
isotropic and apply the well-known P1 method [14],

Substituting this expansion into (A1), integrating
over the angles, then multiplying by μ, and integrating
over the angles again, we obtain the system of equa-
tions for the functions Fik(x1, τ), i, k = 0, 1,

where

= + μ =
π 0 1

1 ( 3 ), 0,1.
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The following expressions hold for α1(  → x1) [13]:

(A2)

and for α1r( , x1),

Using the P2 approximation [14], we can show that
the following relations hold:

Then, going back to the variable x, we obtain

(A3)

To solve Eq. (A3), let us first consider the case σ =
0. In this case, the convergence method used in [2] can
be applied,

(A4)

The calculations show that the second approxima-
tion differs from the first one by about 1%. The solu-
tion for σ ≠ 0 is obtained in a similar way. Then, using
the second approximation for F11(x)σ = 0, we obtain
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where α1(  → x1) is defined by relations (A2). Similar
to the above said, the second approximation of this
convergence method yields an almost exact result.
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