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Abstract—Classical dynamics methods have been used to study the nonlinear vibrations of a CO2 molecule.
Consideration includes not only the anharmonicity valence angle, which enables one to explain the Fermi
resonance, but also the physical nonlinearity of the force field (stiffness and softness of springs). In the far-
thest neighbor approximation (with regard to oxygen–oxygen interaction), a set of nonlinear differential
equations in the Lagrangian form has been derived. Their analytical solution has been derived using the
method of invariant normalization. The occurrence of a strange attractor has been discovered by numerical
simulation. Recommendations for the selection of initial conditions are given that take into account the pos-
sibility of regular beatings that change into to chaotic beatings.
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INTRODUCTION
In the gaseous (vapor) state, molecules are disor-

dered and move independently, except for instants of
collisions. The translational and vibrational motions
of molecules, as well as the vibrations of atoms inside
them, can be considered to be unaffected by other
molecules. Therefore, the behavior of individual mol-
ecules is of primary interest in studying the gaseous
state.

Classical (Newtonian) mechanics has long been
widely used in the kinetic theory of gases. However, it
is generally accepted that the range of applicability of
classical mechanics is limited by sizes that are not too
small. Nevertheless, the laws of classical mechanics
work even on the interatomic distance scale. The
notion of the point mass as an object that possesses an
inertial mass, is devoid of an internal structure and has
sizes that are much smaller than the characteristic
sizes of a given problem is not defined quantitatively.
As a result, atomic nuclei, which are much heavier
than electrons, can be considered as classical point
masses in many problems. A molecule is viewed as a
dynamic system that has a constant composition, i.e.,
a constant number of bonded atoms (bonds are simu-
lated by weightless springs) that oscillate about an
equilibrium configuration. Newton’s third law
imposes restrictions on forces with which two particles
act on each other; i.e., the forces must be oppositely
directed along a straight line that passes through the
particles and have the same value. This law ignores
electrodynamic interactions, except for Coulomb
attraction and repulsion. Therefore, only static forces,

i.e., those that depend on the mutual arrangement of
point masses can be considered. Thus, in keeping
within the Newton, Lagrangian, and Hamilton princi-
ples, classical mechanics allows us to study and explain
mechanical vibrations of atoms in a molecule.

The theory of small-amplitude linear vibrations
was developed long ago [1, 2]. In the linear approxi-
mation, only the most intense spectral lines are stud-
ied. The introduction of geometrical nonlinearity
(valence angle anharmonicity) [3] dramatically
changes the motion pattern; namely, a strong interac-
tion arises between oscillation modes, which is
accompanied by a periodic energy exchange (transfer)
between these modes and the spitting of the Raman
fundamental frequency. This phenomenon, which was
discovered by Rosetti in 1931 and explained by Fermi
[4] in the same year, is known as the Fermi resonance.

It is natural to expect new effects in the vibrations
of a molecule if additional sources of anharmonicity
appear in its mechanical model. These are, specifi-
cally, the interaction of oxygen atoms with each other
(farthest neighbor approximation) and the physical
nonlinearity of the CO2 force field (stiffness or soft-
ness of springs) [5].

1. DEFINITION OF THE PROBLEM
AND BASIC EQUATIONS

We consider the free vibrations of a CO2 molecule.
The computational model of the problem and main
designations are presented below.

ATOMIC AND MOLECULAR 
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(i) mC and mO are the masses of C and O atoms,
respectively, as point masses.

(ii) O(x1, y1, 0), C(x2, y2, 0), and O(x3, y3, 0) are the
current positions of the atoms.

(iii) ν1 is the linearized eigenfrequency correspond-
ing to vibrations ϑ1 that are symmetric about the cen-
ter of mass of the molecule, ν2 is the frequency of
deformation or f lexural vibrations ϑ2 of the molecule,
and ν3 is the frequency of antisymmetric or skew-sym-
metric vibrations ϑ3 of the molecule (see [3]).

In contrast to [3], the given model takes into
account that the forces of oxygen–carbon and oxy-
gen–oxygen interaction are nonlinear.

(iv) fCO is the linear part of the stiffness of a weight-
less spring that simulates the C–O interatomic bonds
(valence stiffness), f1(Δlij, ϕ) is the nonlinear compo-
nent of the stiffness, Δlij is the change in the distance
between the ith and jth atoms (i ≠ j), and ϕ is the
change in the valence angle OCO.

(v) fOO is the linear part of the stiffness of a spring
that simulates interaction between the farthest neigh-
bors, and f2(Δlij, ϕ) is its nonlinear component.

(vi) (fϕϕ + f3(Δlij, ϕ)) is the deformation (f lexural)
stiffness (correction coefficients are taken according to
experimental data in [5]).

The dimensionless Hamiltonian of the system in
normal coordinates  = (  – )/2 (symmetric),

=  (deformational), and  = (  + )/2 (anti-
symmetric) has the form (here,  = (x1 – l)/l,  =
(x3 + l)/l, and  = y1/l; the length scale is set equal to
equilibrium length l of the C–O interatomic length;
l = 1.16 × 10–10 m)

(1)
where

(2)

is the kinetic energy and

(3)

ϑ1 3x 1x
ϑ2 1y ϑ3 1x 3x

1x 3x
1y

= + Π,H T

= ϑ + ϑ + ϑ� � �
2 2 2
1 2 2 2 3

1 {2 2 2 },
2

T M M

ϕϕ

ϕϕ

⎧
⎪Π = σ Δ + Δ + Δ Δ⎨
⎪⎩

⎫+ Δϕ + Δ + Δ⎬
⎭

+ Δ Δ Δ + Δ

+ Δ − Δ Δϕ + Δ + Δ

+ Δ Δ Δ + Δ + Δ

2 2 2
CO 12 23 OO 12 23

2 3 3 3
12 23

2

' 12 23 12 23

2 4 4 4
23 12 12 23

2 2
' 12 23 12 23 ' ' 12

1 [ ( ) 2 ]
2

1 1 { [ ( )
2 6

3 ( )
13 ( ) } { [ ( )

24
4 ( ) 6

rrr
E

rrr

r rrrr
E

rrrr rrr r

K r r K r r

K l k r r
M m

k r r r r

lk r r l k r r
m

k r r r r k r

ϕϕ

ϕϕ ϕϕϕϕ

Δ
+ Δ + Δ

+ Δ Δ Δϕ + Δϕ

2 2
23

2 2 2
12 23

2 4
' 12 23

]

6 [ ( )

2 ] }
rr

rr

r

l k r r

k r r k

is the potential energy. In the above expressions,
Δ = (  – 1) and Δ  = (  – 1) are the elongations

of mechanical couplings,  =  is the dis-
tance between the ith and jth atoms (  = –  +
M2  – 1,  = –  + M2  + 1,  = M2 ), and Δϕ
= arctan( / ) – arctan( / ) is the change in the
valence angle due to deformation vibrations. The
parameters that are absent in [3] are as follows: kCO
and kOO are the elongation-independent components
of the stiffness of the springs that simulate C–O and
O–O interatomic interactions, respectively; kϕϕ is the
invariable part of the f lexural stiffness of the molecule;
KCO = kCO/kq, KOO = kOO/kq, and Kϕϕ = kϕϕ/kϕ are the
ratios of the above quantities to the coefficients of
model [3], which were defined in [2] according to [4];
krrr, krrr', krϕϕ, krrrr, krrrr', krrr'r', krrϕϕ, krr'ϕϕ, and kϕϕϕϕ are
other expansion coefficients, which were so desig-
nated (except for k and angle ϕ) in review [6] accord-
ing to [5] and adopted (as well as kCO, kOO, and kϕϕ) in
accordance with experimental data in [5], and mE =
kql2/σ2 is the energy scale. Overbarred quantities in
expansion (3) of the potential, which are lacking in
[3], characterize the physical anharmonicity of the
vibrations.

It follows from the force versus the elongation
characteristic dependence (Fig. 2) that the effects of
anharmonicity arise when the deformation of inter-
atomic bonds exceed 0.2.

Since the straggling of experimental data [6] for the
coefficients at terms in the fourth power in expansion
(3) is rather large, we will subsequently take into
account only the cubed quantities in the expression for
the potential (except for chaotic vibrations). It should
also be noted that the farthest neighbor interaction
(O–O interaction), the main part of which is taken
into account through coefficient KOO = kOO/kq = 7.3 ×
10–2, is weak.

Having numerically solved the equations of motion
written as the Lagrange equations of the second kind,
which, up to deformation squared, have the form

(4)
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where

one can draw the following conclusions.
(i) The physical nonlinearity changes the motion

picture neither quantitatively nor qualitatively. There-
fore, nonlinearity should be taken into account only
for refining the intensity of weak lines viewed as solu-
tion harmonics. (see Section 3).

(ii) In the case of small-amplitude vibrations and
the initial conditions that provide the maximal rate of
energy exchange between degrees of freedom, sym-
metric ϑ1(t) vibrations and deformation ϑ2(t) vibra-
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tions do not excite antisymmetric ϑ3(t) vibrations.
Therefore, in our case, we can have {  ≪ ,  ≪
1}  = 0 and  = 0 and disregard antisymmetric
vibrations when seeking an approximate analytic solu-
tion.

For detailed analysis, let us consider the depen-
dence of the maximal absolute deviation along the
antisymmetric coordinate (max| |) from . The
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Fig. 1. Computational scheme.
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splitting of spectral lines is most distinctly seen in the
asymptotic case; therefore, a solution will be sought
for initial conditions  ≪  and  = 0. Quantity

 is varied, that ratio /  is kept equal to 10.
Analytical results (Fig. 4) show that  has a critical
value ( )cr ≈ 0.25), above which  has a significant
influence on the Fermi resonance.

It can be shown that an antisymmetric perturbation
influences the symmetric and flexural (deformation)
motion of the molecule in the same way. Based on the
curves depicted in Fig. 5a, one can predict the stability
of symmetric and deformation vibrations of the mole-
cule against antisymmetric initial deviation  (all
initial momenta are taken to be zero). The critical
value of  can be seen to obviously correlate with
( )cr shown in Fig. 4; their ratio is roughly equal to
ratio /  taken at the previous stage of simulation
(simulation data are shown in Fig. 4). If the ampli-
tudes of vibrations along the  coordinate are small,
the energy exchange between the symmetric and anti-
symmetric forms is weak (Fig. 5b; cf., Fig. 4b, in which
the envelope of the solution is shown in the first
approximation (t) = . The envelope will be
derived in the next section using the equivalent normal
form method combined with the invariant normaliza-
tion algorithm [7]). Under the given initial conditions,
vibrations take place along the axis of the undeformed
molecule and flexural vibrations with frequency ν2 are
not excited. However, the deformation vibrations may
be unstable, as a result of which even a small initial
deviation  may build them up.

Fermi [4], as well as the authors of this work [3, 8],
believed that antisymmetric vibrations do not affect
interaction between symmetric and deformation
vibrations. The above results allow us to determine the
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applicability conditions for the classical approach,
including small-amplitude vibrations, in which case
the motion is regular.

2. ASYMPTOTIC ANALYSIS OF ENERGY 
EXCHANGE BETWEEN DEGREES 

OF FREEDOM

Let us reduce the method of reducing a set of equa-
tions to the Poincaré–Birkhoff recurrence normal
form using the invariant normalization algorithm in
the Zhuravlev–Petrov form [7]. Normalizing Hamil-
tonian (1), we can reduce it to the integrable form [3]

(5)

Here,  = t/  is the normalized time;  = /mj

and  = dot  = d /d  (j = 1–3) are the normalized
coordinates and velocities;  = 1/  =
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 = ( /mH)k111;  = ( /mH)k133;  =

( /mH)k322;  = 4(KCO + KOO)( /mH)μ;

k111 = σ2/3(krrr + 3krrr')l/kq < 0; k122 = σ2  [(KCO +
KOO) – 2/M2Kϕϕ + 2/300(lkrrr/kq)] > 0 (that is, coeffi-
cients krϕϕ of the expansion in the physical nonlinear-
ity parameters, despite their analogy with the coeffi-
cient at  in expansion (5) in the physical nonlin-
earity parameters in the cubic part of the potential, do
not influence the parameters of energy exchange
between modes),

Indeed, up to deformation terms cubed in (3),
springs that model interatomic interactions are soft
and physical anharmonicity has a minor influence on
coefficient k122 at the resonance term. This coefficient
is responsible for energy exchange between modes.
The time is normalized for taking into account the
deviation of the total relative constant part of the stiff-
ness coefficient for C–O and O–O bonds from unity
due to extension–tension, KCO + KOO = 1.020. In (1),
the time is not normalized in order to show the influ-
ence of different components of stiffness (kCO, kOO,
kϕϕ) on the oscillation frequency of the linearized sys-
tem. The fundamental oscillation frequencies of the
linearized system will be  = /  =  = σ =
2 + μ,  =  =  = 1.005 × 0.990 = 0.99 ≈ 1,

and  =  = (KCO – KOO)  (2 + μ)  ≈
2  ≈ 4, respectively. The frequency detuning in
the form ( /  – 2) is not introduced in order to pre-
vent the escape of experimental errors [5] into fre-
quencies ν1 = 1338 cm–1 and ν2 = 667 cm–1 [2].

To take into account the offset of frequencies ν1
and ν2 from integer ratio 2 : 1, μ = σ – 2 = ν1/ν2 – 2,
one can, as in [8] (the cubic part of Hamiltonian  is
similar to that presented in [8], and terms containing

, , and , which is lacking in [3, 8], do not
influence the normal form of the first approximation),
see an analogy with [9]. This results in an asymptotic
solution within the interval (t ∈ [0; nT] (for initial
deviations  = 0.05 and  = 0.1  and zero initial
momenta, the period of energy exchange (transfer [7, 9])
between the symmetric and deformation degrees of
freedom is T = 44.612) in the form of a sum of n soli-
tons:
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As follows from the basic relationships of the nor-
mal form algorithm [7], the first approximation does
not contain the antisymmetric oscillation exactly
because its frequency considerably differs from the
other two frequencies, which are responsible for the
third-order internal resonance (as was noted as early as
in 1931 by Fermi [4]). It should be noted that analyti-
cal solution (6) agrees well with the numerical solution
(Fig. 3): the beating periods of the numerical solution
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T must be fulfilled. The difference (T1 – T2) is much
smaller than T1 and T2, which indicates a

high calculation accuracy. A number of differences
seem to be associated with the introduction of offsets
into spectroscopic data [2] (the antisymmetric coordi-
nate interacting, according to Figs. 4b and 4c, with the
symmetric and deformation ones is embodied in the
term [l3/(6mE)]krrr(Δ  + Δ ) of the potential (3); in
contrast to [8], the cubic nonlinearity of the spring
deformation influences the energy exchange period
(the absence of the lateral displacement of the corre-
sponding initial conditions is disregarded)). This point
calls for further investigation.

3. SPECTRAL ANALYSIS

When the energy transfer between the degrees of
freedom is the most intense, the solution to the gov-
erning equations corresponding to Hamiltonian (1)
(both numerical equation and analytical equation (6))
is periodic. Therefore, it can be expanded into a Fou-
rier series. Harmonics, the frequencies of which differ
little from the fundamental frequency, make the great-
est contribution to the sum.

The thus obtained spectrum of the harmonic
intensities of symmetric oscillation (t) is shown in
Fig. 6. When imposed on experimental lines [2] (the
dimensionless intensities of these lines were classified
based on a qualitative criterion: intense, medium-
intensity, weak, and very weak. Continuous and
dashed vertical lines in Fig. 6 show combination and
IR spectral lines, respectively. The thickness and
height of the vertical lines correlate with their dimen-
sionless intensity), and the spectrum makes it possible
to identify a greater number of frequencies compared
with linear [3] and quadratic [8] approximations as
applied to elastic forces.

3
12r 3

23r

ϑ1

4. IRREGULAR MODES OF MOTION
It is known that the presence of two or more posi-

tions of stable equilibrium separated by unstable posi-
tions or potential barriers in a dynamic system may
cause chaotic induced vibrations, which, in turn, may
result in hops between neighboring equilibrium posi-
tions [10]. In systems with many degrees of freedom,
the role of external loads for a given normal coordinate
is played by other coordinates; therefore, the above
scenario is also possible under noninteraction condi-
tions.

In accordance with the aforesaid, antisymmetric
oscillation  is disregarded. It does not influence [3,
8] the parameters of regular energy exchange between
the degrees of freedom of the molecule (the question
of whether it influences chaotic vibrations calls for fur-
ther investigation). Then, it becomes possible to plot
potential (3) in the space of two arguments,  and 
(Fig. 7).

It follows from this plot that taking into account
additional (compared with the physically linear model
[3, 11]) anharmonicity has a minor effect on the posi-
tion of the saddle point, but it does reflect the maxi-
mum of the potential. Consequently, the influence of
new anharmonic frequencies is expected to show up in
the neighborhood of the saddle point. For this reason,
fourth-order terms in expansion (3) were ignored in
the case of small-amplitude vibrations (Figs. 3, 4 at

 ≤ 0.2; Fig. 5 at  ≤ 0.02; Fig. 6). As has been
noted in Section 1, the accuracy of the experimental
analysis of these vibrations (data [6]) is not high.

Expanding potential  = ( , ) into a
series and discarding fourth-order terms, we obtain
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Thus, two wells in potential  ( , ) approxi-

mated by (8) are due to only the term containing the
product . If the Mel’nikov necessary condition
[12, 13] for chaos is used (specifically, for determining
the sizes of the chaotic domain in the phase space), it
becomes impossible to take single-degree-of-freedom
systems as undisturbed. This requirement follows from
the well-known [14, 15] generalization of the
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Mel’nikov method for autonomous systems with many
degrees of freedom.

Numerical simulation reveals a stochastic attractor
in the system (Fig. 8).

If the initially stored energy is in accord with the
potential energy at the saddle point, the interaction of
the symmetric and deformation oscillation modes
with the antisymmetric one is possible for any value of
ratio /  and .

For example, antisymmetric vibrations may be
excited by symmetric and deformation vibrations for

 greater than its critical value ( )cr (Fig. 1). Figure 9a
exemplifiers the typical dependence (t) under the
conditions described in the caption to Fig. 8 (the
scales and the ranges of parameters are the same as in
Fig. 3 for comparison), when a strange attractor arises
in the system.

Similarly, antisymmetric vibrations may excite
symmetric vibrations if  > ( )cr. This condition is
sufficient for falling into the neighborhood of the sad-
dle point (Fig. 9b).

ϑ30 ϑ10 ϑ20

ϑ10 ϑ10

ϑ3

ϑ30 ϑ30
Fig. 7. Surface of the potential in the mechanical model of
the molecule ( ( , ) = ( , ,  = 0).

40

30

20

10

−0.5

0.5

0

0

Π
12

(ϑ
1,

 ϑ
2)

0

−1

−2

ϑ2 ϑ1

Π12 ϑ1 ϑ2 Π ϑ1 ϑ2 ϑ3

Fig. 8. Phase portraits of (a) symmetric vibration , (b) deformation vibration , and (c) antisymmetric vibration  under the

initial conditions  = 0.9,  = 0.09,  = 0,  = 0,  = 0, and  = 0.

4
(a)

1
ϑ1

ϑ
1

0

.

−1−2−3

2

0

−2

−4

4
(b)

1
ϑ2

ϑ
2

0

.

−1−2−3

2

0

−2

−4

4
(c)

1
ϑ3

ϑ
3

0

.

−1−2−3

2

0

−2

−4

ϑ1 ϑ2 ϑ3

ϑ10 ϑ20 ϑ30 ϑ� 10 ϑ� 20 ϑ� 30

Fig. 9. Typical oscillatory process: (a) plot (t) under the conditions of Fig. 8 (the count time equals 27 630 units of dimension-

less time) and (b) phase portrait (  = 2.5 × 10–2,  = 0,  = 0 (j = 1, 2; n = 1–3)).

0.05
(a)

(b)

80

0.04
0.03
0.02
0.01

0
−0.01
−0.02
−0.03
−0.04

−0.01−0.02−0.03−0.04
t

1

2

604020

ϑ
3(

t)
, Θ

3(
t)

ϑ1

0 0

. ϑ
1(

t)

0

−0.05

ϑ3

ϑ30 ϑ 0j ϑ� 0n



1796

TECHNICAL PHYSICS  Vol. 61  No. 12  2016

ALDOSHIN, YAKOVLEV

The rate of transition from regular to stochastic
vibrations is a subject of separate consideration.

CONCLUSIONS
We suggested an approach to studying the nonlin-

ear vibrations of a CO2 molecule that is based on clas-
sical dynamics. Equations of molecule vibrations were
derived in the farthest neighbor approximation, which
includes the anharmonicity of valence vibrations and
the force field of the molecule (the stiffness and soft-
ness of springs). The equations were solved both
numerically and analytically using the invariant nor-
malization method. It was found that the anharmo-
nicity of deformation vibrations makes a major contri-
bution to the Fermi resonance. Taking into account
the anharmonicity of the force field and O–O bonds
in the molecule makes it possible to determine addi-
tional frequencies in the spectrum of the molecule. A
strange attractor was revealed by numerical simula-
tion. Recommendations are given for selecting initial
conditions for the excitation of vibrations in the mole-
cule that prevent the regular vibrations from changing
to chaotic vibrations.
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