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Abstract—A synergetic model is proposed to describe the influence of dynamic strain aging on the plasticity
of materials that is controlled by the Peierls barriers overcome by dislocations. The immobilization of dislo-
cations by the impurities concentrated in the dislocation cores is taken into account. The behavior of calcu-
lated deformation curves is studied as a function of the material parameters and the mechanical test condi-
tions.
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INTRODUCTION
A widely used method of studying the mechanical

properties of materials is to measure their deformation
curves at a given constant strain rate ε, i.e., the change
required to maintain stress with time t (or, what is
equivalent, with strain ε = t). The deformation curves
are then processed using basic models to extract the
quantitative characteristics of deformation mecha-
nisms, such as the dynamics of dislocations. The
influence of uncontrollable impurities often distorts
experimental results. Therefore, it is useful to deter-
mine the involvement of impurity effects from the
qualitative shape of the deformation curves. This
brings up the problem of describing the qualitative
changes in the deformation curves that are caused by
the impurity subsystem in a crystal.

The tendency of dislocation cores to be covered
with impurities leads to the modification of the
dynamic behavior of dislocations, i.e., so-called
“aging.” On a macroscopic level, dislocation aging
manifests itself in material hardening, a change in the
strain-rate sensitivity of deforming stress, anomalies in
the temperature dependence of the yield point, and
serrated plastic f low [1, 2]. In general, these phenom-
ena are called dynamic strain aging (DSA) of a mate-
rial.

The plasticity of materials is often described in
terms of a mechanical approach using phenomenolog-
ical equations, which are derived to reproduce certain
experimental results [3]. However, in essence, DSA is
a memory process; therefore, it is difficult to find a
correct set of equations using a purely phenomenolog-
ical approach. In this case, it is helpful to apply the
physical concepts of plastic f low as dislocation motion

through the potential barriers induced by the micro-
structure of the material. The advantage of such an
approach is the possibility of taking into account the
specific features of materials with various dislocation
mobility mechanisms. The theories of diffusion impu-
rity motion to cores when a thermal f luctuation,
which throws a dislocation segment over an obstacle,
is waited for are widely applied to the materials where
dislocation motion is controlled by local obstacles
[4, 5]. In these time intervals, static aging of disloca-
tion segments actually takes place. Dislocation seg-
ments jump over a significant distance, which is larger
than the interatomic distance; therefore, the trapping
of detachable impurities and the history of impurity
accumulation in dislocation cores may be neglected.
A detailed description of the physical foundations of
such theories and numerous references are given in
review [6]. Models are developed to describe the spe-
cific features of plastic f low that are related to the
N-shaped strain-rate sensitivity of the dislocation drag
that appears under certain conditions (see, e.g., [7]).
DSA models for the materials where the dislocation
mobility is controlled by the potential relief of the
crystal lattice, so-called Peierls barriers, with the
period that is equal to the lattice parameter are less
developed. These materials include covalent crystals,
bcc metals, and intermetallics [1, 2]. The purpose of
this work is to develop a DSA theory for such materi-
als, where jumplike dislocation motion manifests itself
on a microscopic scale and is considered to be contin-
uous on a larger scale. Strictly speaking, dislocation
aging has a dynamic nature only in this case.

ε�

SOLID
STATE



TECHNICAL PHYSICS  Vol. 61  No. 9  2016

DYNAMIC STRAIN AGING OF THE MATERIALS CHARACTERIZED 1347

SYNERGETIC MODEL FOR THE PLASTICITY 
OF AN IDEAL CRYSTAL

DUE TO DISLOCATION MOTION
AND MULTIPLICATION IN AN ENSEMBLE

As a starting base, we consider a deformation
model for a perfect crystal with a negligibly low impu-
rity content [8, 9]. Total strain rate  is the sum of elas-
tic (1/S)dσ/dt and plastic NbV(σef) components,

(1)
Here, σ is the applied stress, S is the elastic modu-

lus, t is the time, N is the dislocation density, b is the
Burgers vector, V is the dislocation velocity, and σef is
the effective stress (i.e., external stress σ modified by
internal stresses of various natures). The stress depen-
dence of the velocity is described as V(σef) = B ,
where B is the dislocation mobility and m is the exper-
imental strain-rate sensitivity.

Following [8, 9], we describe the dislocation self-
multiplication ability by the empirical law

(2)
where parameters w and n are varied from material to
material. Equation (2) is often supplemented with the
terms that describe dislocation annihilation [1, 6, 10].
In this work, however, we do not use these terms
because of the assumption that the density of mobile
dislocations is relatively low in the vicinity of the yield
strength under study.

Equations (1) and (2) were successfully applied to
describe the deformation of alkali-halide and semi-
conductor crystals [8–14]. The models applied to var-
ious materials are classified in terms of exponents m
and n in the stress dependences in Eqs. (1) and (2). To
describe the phenomenon of dynamic strain aging, we
have to generalize a theory by taking into account the
interaction of a dislocation ensemble with the impu-
rity subsystem of a crystal.

DYNAMIC STRAIN AGING
Dislocation cores have energetically predominant

sites for impurities. As a result, dislocations attract
impurities, and they either diffuse into the dislocation
cores or are trapped by them during contact in the
course of dislocation motion in a crystal. The impuri-
ties located in a dislocation core adhere to the crystal
lattice, which decreases the force moving the disloca-
tion. The amount of impurities accumulated in a dis-
location core depends on the nucleation time of the
dislocation and its lifetime (age) under variable exter-
nal conditions, which assigns a literal meaning to the
concept of aging. Thus, the dynamics of a dislocation
ensemble in an impurity-containing material has spe-
cific memory of individual history of dislocation
motion [14, 15]. This fact means that, strictly speak-
ing, deformation should be described by time-nonlo-

ε�

σ = ε − σ� ef(1/ ) / ( ).S d dt NbV

σef
m

= σ σef ef/ ( ) ,ndN dt w V N

cal relations, which is not taken into account in most
phenomenological approaches. Below, we develop a
model to take into account different dislocation ages
in an ensemble, which is a necessary ingredient for an
adequate description of deformation.

For this purpose, we will use a differential disloca-
tion density, namely, dislocation generation rate ρ(t)
in a time interval from t to t + dt, rather than a total dis-
location density. The increment of the total disloca-
tion density ΔN in time dt is ΔN = ρ(t)dt. The total
density by time t is the sum of contributions generated
at various previous times. As a result, we have modi-
fied Eq. (2),

(3)

where N0 is the initial dislocation density and t1 is the
time of nucleation of new dislocations. Similarly,
Eq. (1) for the deforming stress changes,

(4)

Equations (3) and (4) illustrate the memory of dis-
locations about evolution in the previous times of their
“biographies.”

The motion of a dislocation in an impurity-con-
taining crystal is damped in time due to an increase in
the impurity content in its core, and deformation is
maintained owing to the nucleation of “fresh” dislo-
cations. For example, the Ananthakrishna theory [6]
takes into account the influence of impurity atoms on
a decrease in the density of mobile dislocations by set-
ting the rate of this process in the entire ensemble.
The model proposed in this work takes into account
the individual impurity accumulation kinetics in a dis-
location core to a certain extent, which is achieved by
taking into account the external stress operating
during dislocation nucleation. The subsequent aging
of a dislocation is simulated a gradual decrease in the
effective stress moving the dislocation from its nucle-
ation.

We consider the situation when dislocation kinetics
occurs at the times that are short as compared to the
kinetics of the entire dislocation ensemble. The
immobilization of an individual dislocation is simu-
lated using a decreasing effective stress on it,

+ +

ρ = σ σ

+ ρ σ σ

= σ + ρ σ

∫

∫

0 ef ef

1 1 ef 1 ef 1

0

0 ef 1 1 ef 1

0

( ) ( ) [ ( )]

( ) ( , ) [ ( , )]

( ) ( , ),

n

t
n

t
n m n m

t wN t V t

w dt t t t V t t

wBN wB dt t t t

σ = ε − σ

− ρ σ

= ε − σ − ρ σ

∫

∫

�

�

0 ef

1 1 ef 1

0

0 ef 1 1 ef 1

0

(1/ ) / [ ( )]

( ) [ ( , )]

( ) ( , ).

t

t
m m

S d dt bN V t

b dt t V t t

bBN bB dt t t t



1348

TECHNICAL PHYSICS  Vol. 61  No. 9  2016

PETUKHOV

(5)

where t is the current time, t1 is the dislocation nucle-
ation time, and τim is the average immobilization time
determined by the rate of impurity accumulation in a
dislocation core. When a dislocation nucleates (t = t1),
it has no excess impurities and the effective stress on it
is equal to external stress σef(t, t1) = σ(t). When the dis-
location age t – t1 increases, the effective stress decays
because of an increasing impurity content in the dislo-
cation core and the related drag force. Time τim is con-
sidered to be short as compared to the time of changing
stress σ(t). The immobilization kinetics is determined
by the following factors: impurity concentration c0 in a
crystal, the force of impurity–dislocation interaction,
and so on. For example, when impurities are com-
pletely trapped in a layer of thickness r, τim was esti-
mated to be τim~ a2/(rBβc0) [14, 15]. Here, β is the
coefficient of proportionality between the impurity
content at a dislocation and the generating retarding
stress. Thus, using parameter τim, we describe the
combined influence of these factors on deformation.

Leaving aside some secondary side phenomena,
such as strain hardening, we study the possible types of
manifestation of dynamic dislocation aging in the plas-
tic flow kinetics in various (m, n) models. Strain hard-
ening can be approximately taken into account as an
additional additive contribution to the internal stresses,
which does not change qualitative conclusions.

Deformation curves can have the so-called yield
drop, where the deforming stress changes abruptly and
then behaves evenly. The calculation by Eqs. (3)–(5)
shows that the yield drop height, which is called the
upper yield stress, and the yield drop width are sub-
stantially modified in impurity-containing crystals as
compared to the corresponding pure crystals. The fig-
ures presented below illustrate these changes. How-
ever, the most pronounced changes in the deformation
curves are caused by dynamic dislocation aging at the
stage following the yield point.

STATIONARY STATE

A stationary state can be reached during deforma-
tion, and the conditions of this state will analyzed
below. In the stationary state, the stress and the rate of
dislocation generation become constant, σ = σs and
ρ = ρs, respectively. Substituting these constants into
Eqs. (3)–(5) and taking the time integral, we obtain
their values

(6)

in the limit t → ∞.
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The obtained stationary stress can be compared to
the analogous value calculated by the full impurity
trapping model [14, 15] for the case m = 1, σ = [(n +
1)βc0r/(wa2)]1/(n + 1), and find that they agree with each
other at the value of immobilization time τim given
above. It is interesting that the impurity contribution
to deforming stress (6) is independent of strain rate ε.

Below, we will present slightly different equations
of the model, which are more convenient for calcula-
tions and studying the stability of the stationary state.
We substitute the explicit time dependence of the
effective stress (Eq. (5)) into Eq. (3), divide both parts
of the equation by σn + mexp[–(n + m)t/τim], differen-
tiate it with respect to time, and obtain

(7)
Applying a similar procedure to Eq. (4), we reduce it
to the form

(8)
It is seen that Eqs. (7) and (8) have the same sta-

tionary solution (Eq. (6)), as would be expected.

MODES OF REACHING THE STATIONARY 
STATE AND THE CRITERION

OF ITS STABILITY
The aim of this section is to study the shape of

deformation curves outside the yield strength as a
function of the problem parameters, first of all, expo-
nents m and n. Using the set of differential equations
(7) and (8), we analyze the behavior of the curves near
stationary solution (6) in the approximation that is lin-
ear in deviation on the assumption that ρ = ρs + δρ and
σ = σs + δσ. To this end, we use the following scale
factors: S for stress, t0 = 1/(wBSm + n) for time, ρ0 =
(1/b)w2BSm + 2n for the dislocation generation rate, ρ0t0
for the dislocation density, and dimensionless param-
eters ε = t0 and τ = τim/t0.

To study the stability of the stationary solution, the
time dependence of the deviation is sought for in the
form δρ and δσ ~ exp(λt/τ). The following character-
istic equation is derived in a standard manner:

(9)
where a1 = (m + u), a2 = (n + 2m)u, a3 = (n + m)2u,
and u = mετ/σs.

The stationary state is stable if the deviations δρ
and δσ ~ exp(λt/τ) from it decrease in time, which
takes place when the real parts of all solutions to the
characteristic equation are negative. According to the
well-known criterion for a cubic equation (see, e.g.,
[17]), this situation occurs at a1a2 > a3, i.e., at u >

 in our case. If n ≤  , the right-

hand side is negative or zero and the stationary state is
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stable at any other parameters. For example, at n = 0,
the stationary state is stable at any nonnegative m.
This conclusion agrees with the shape of the deforma-
tion curves calculated by Eqs. (7) and (8) and illus-
trated in Fig. 1. The limitation imposed on u to

achieve stability takes place at n > . For exam-

ple, at n = 1 and m = 1, we have u = ετ3/2/  > 1/3 for
stability. In this case, the deformation curve has the
shape shown in Fig. 2a and the stationary state is
reached via damped oscillations. At ετ3/2/  ≤ 1/3, the
stationary state is unstable and continuous oscillations
take place instead of it (see Fig. 2b).

We now find the condition of oscillations in the
deformation curves during uniform deformation.
Oscillations are absent when all three roots of the
characteristic equation are real. In the trivial case at
n = 0, the characteristic equation can easily be solved and

have the roots λ3 = –m and λ1,2 = {–u ± (u2 – 4mu)1/2}.

The roots are real at u( = m1 – 1/mεt1 + 1/m) ≥ 4m. At u <
4m, oscillations can occur in the deformation curves.
The calculation demonstrates that oscillations are
present in this case; however, their amplitude is low
and they manifest themselves in the minimum behind
the yield drop in Fig. 1.

Let us consider the general case at n > 0. At low u, one
real negative root (λ3 ≈ –m) takes place and two other
roots have imaginary parts, λ1,2 ≈ –u/2 ± i(mu)1/2.
At high u, one root is high and negative (λ3 ≈ –u) and
two other roots are

(10)

Thus, at n, m > 0, the roots can be real only in a
limited intermediate u range. The theory of cubic
equations asserts that the types of solution are classi-
fied with the discriminant [17]
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(11)

and are represented by the following three types:
D > 0, the equation has three different real roots;
D < 0, the equation has one real and two complex-

conjugate roots;
D = 0, the equation has three real roots, at least two

of them being coincident.
Thus, the boundary between the oscillating and the

monotonic behavior of the deformation curves beyond
the yield point is determined by the condition D = 0. If
this boundary exists, it can be calculated by Eq. (11).
For illustration, the result of this calculation for n = 1
and arbitrary m is shown in Fig. 3. At the parameters
corresponding to region 1 between boundaries u1 and
u2, monotonic behavior of the deformation curves is
expected, and oscillating behavior should occur in
other cases.

Figure 4 depicts phase diagrams for the types of
solution for the model at m = n = 1 that exist at the val-
ues of control parameter u on either side of the critical

= − − − +
= − + + + +

+ − − −
− + − +

2 2 3 3 2
1 2 2 1 3 3 1 2 3

3 2 2 2

4 3 2 2

3 4 2 3

4 4 27 18

(3 4 ) (14 38 26 )

( 27 90 101

38 ) 4( )

D a a a a a a a a a

n n m u n nm m nu

n n m n m

nm m u n m m

Fig. 1. Deformation curves for parameters n = 0, m = 1, τ =
2, and ε = (1) 0.99 and (2) 1.01.
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value (1/3): a stable focus is seen at D > 0 (Fig. 4a, u = 1)
and a limiting cycle, at D < 0 (Fig. 4b, u = 0.2).

DISCUSSION OF RESULTS

The interaction of dislocations with the impurity
subsystem of a material substantially affects its
mechanical properties, in particular, plasticity. Leav-
ing aside strain hardening, the model of the deforma-
tion of a pure material that is represented by Eqs. (1)
and (2) results in monotonic stable behavior of defor-
mation curves outside the yield point. The generalized
model developed for alloyed materials and alloys takes
into account the effect of the impurity subsystem and
leads to a larger variety of the types of deformation
curves. The stationary state outside the yield point can
be reached monotonically and after a series of damped
oscillations. Moreover, the stationary state cannot be
reached at certain parameters, and continuous stress
oscillations occur instead of it. These oscillations can
be considered as the precursor of the appearance of
nonuniform plastic-flow instabilities, such as the
Portevin–Le Chatelier effect [6], and correspond to
the experimentally detected types of behavior of doped
silicon crystals [18].

The specific features in the temperature and strain-
rate dependences of the deforming stress are consid-
ered as characteristic signs of DSA in the works deal-
ing with mechanical tests [19]. The weakening of the
strain-rate sensitivity that was experimentally detected
in alloyed crystals can be explained in terms of the sub-
stantial impurity contribution described by Eq. (6) and
independent of the strain rate. The presence of oscil-
lations in stress–strain curves can be a direct indica-
tion of dynamic strain aging. For convenience of
extraction of the temperature and strain-rate depen-
dences of the deforming stress, the oscillations in
deformation curves are often smoothed for the models

related to impurity-free materials to be applied [20].
This approach is valid and attractive due to the sim-
plicity of application. However, the theory developed
in this work can serve as the basis for a more adequate
analysis of experimental data.
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