
898

ISSN 1063-7842, Technical Physics, 2016, Vol. 61, No. 6, pp. 898–903. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © V.V. Rybin, V.N. Perevezentsev, Yu.V. Svirina, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 6, pp. 100–105.

Model of Formation of Broken Dislocation Boundaries
at Joint Disclinations

V. V. Rybin, V. N. Perevezentsev*, and Yu. V. Svirina
Mechanical Engineering Research Institute, Russian Academy of Sciences,

ul. Belinskogo 85, Nizhny Novgorod, 603024 Russia
*e-mail: pevn@uic.nnov.ru
Received November 25, 2015

Abstract—We propose a physical model of formation of broken dislocation boundaries (partial disclinations
of deformation origin) at the joints of large-angle grain boundaries. The model explains why and how rota-
tional-type defects are necessarily formed in polycrystals in which plastic deformation at the microscopic
level occurs exclusively via translational slips for strains ε > 0.2.
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INTRODUCTION
At the stage of developed plastic deformation, uni-

formly oriented grains of polycrystals are fragmented
(i.e., split into a large number of strongly disoriented
microscopic regions, viz., fragments) [1]. The trans-
verse sizes dm of the fragments range on the average
from 0.2 to 0.3 μm, and disorientation angles Θ
between them are distributed statistically in the inter-
val from minimal value Θmin ≈ 2° to the maximal value

(1)
Here, ε and ε0 are the current and threshold values

of strain,1 and α is a coefficient describing the inten-
sity of the process. It is usually assumed that the min-
imal disorientation angle Θ is equal to the average
value of the Frank vector ω of partial disclinations of
deformation origin. These specific mesodefects of
rotational type play a very important part in fragmen-
tation because it is these defects generated and moving
over the crystal that cause relative rotations of crystal
lattices of adjoining microscopic volumes.

The fragmentation phenomenon was detected for
the first time in a neck directly under the surface of the
fracture of a polycrystalline molybdenum cylindrical
sample (D ≈ 40 m) deformed at room temperature by
uniaxial tension to ε ≈ 1 with strain rate  ≈ 10–2 s–1 [2, 3].
It was found later that fragmentation is not exhausted
by this particular case. It turned out that metals and
alloys with different crystal lattices, different chemical
and phase compositions, different initial structures
and previous histories of preparation exhibit fragmen-
tation. Fragmentation is observed in a wide range

of temperature and strain-rate regimes (T ≤ 0.4Tm,
10–3 s–1 ≤ ≤ 105 s–1) and technological schemes of
plastic straining [1, 4–10]. These and other experi-
mental facts convincingly prove that fragmentation is
not at all a peculiar phenomenon. On the contrary, it
should be considered as a natural and objectively exist-
ing stage in a chain of evolutionary transformations of
structures of deformational origin that has not been
studied comprehensively as of yet.

Fragmentation is manifested at a late stage of
developed plastic deformation2 (ε ≥ ε0 ≈ 0.2), where it
replaces the stages of formation of irregular non-dis-
oriented and/or weakly disoriented cellular structures
that have been studied comprehensively by the meth-
ods of dislocation physics.

The explanation of the nature of fragmentation can
be reduced to the answer to the following question:
how and why rotational-type mesodefects (partial dis-
clinations of deformation origin) are nevertheless
formed for ε ≥ ε0 in crystals the plastic deformation of
which occurs on a microscopic level exclusively due to
translational slips of the lattice? Here, we propose a
model that makes it possible to analyze this problem at
qualitative and quantitative levels, including the kinet-
ics of formation and growth of partial disclinations of
deformation origin, as well as the relation between the
basic parameters of fragmentation physics (Θmin and ε0).

1Here and below, ε and  denote the true (logarithmic) strain and 
its rate.

max min 0( ).Θ = Θ + α ε − ε

ε�

ε�

2The structural feature of the beginning of the developed plastic 
deformation stage is the formation of partial disclinations of
deformation origin, which is followed by fragmentation of the
crystal [1].

ε�
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1. MODEL

Numerous experimental data obtained using dif-
fraction transmission electron microscopy show that
partial disclinations of deformation origin observed at
the stage of developed plastic straining have a number
of common qualifying features [1, 11, 12]. These are
dense broken dislocation boundaries (a) with predom-
inant component of inclination; (b) with disorienta-
tion angle Θ exceeding disorientation of the boundar-
ies of the (background) cellular structure formed ear-
lier in the crystal; and (c) generated at joints, kinks,
and ledges of large-angle grain boundaries3 [1–3].

The latter distinguishing feature plays the key role
in understanding the origin of partial disclination of
deformation origin.

1.1. Joint Disclination of Deformation Origin 

It was proposed in [1, 13, 14] that in the course of
plastic deformation, special rotational-type meso-
scopic defects that have not been described earlier in
the literature appear at grain boundaries. These
defects were called joint disclinations of deformation
origin. It was assumed that these theoretically pre-
dicted mesodefects4 generate in the surrounding space
elastic stress fields σj of the disclination type with the
power increasing monotonically with ε. At the stage of
developed plastic deformation (for ε ≥ ε0), these fields
attain critical values and begin to relax. Since joint dis-

3Henceforth, we will refer to all above-mentioned linear defects 
as joints of large-angle grain boundaries.

4The existence of joint disclinations of deformation origin was 
experimentally proved much later [15, 16].

clinations are stationary, such a relaxation can only be
due to a local redistribution of dislocations surround-
ing it. As a result, a broken dislocation boundary is
generated at the joint with minimal disorientation
angle Θmin. In terms describing the evolution of meso-
defects, this should be interpreted as the reaction of
detachment of an elementary partial disclination of
power ω0 from the joint disclination. The relation
between the micro- and mesolevels of description is
established by the obvious equality Θmin = ω0. The
experimentally estimated power of such a partial dis-
clination is ω0 = 1°–2° [1].

1.2. Joint Disclination of Deformation Origin
and Classical Taylor’s Model

The above model of formation of partial disclina-
tions of deformation origin required additional expla-
nation because joint disclinations of deformation ori-
gin are absent in the classical dislocation model. To
verify this, let us consider the joint of large-angle
boundaries oriented along unit vector j (Fig. 1). We
traverse it over a close contour in accordance with the
right-hand screw rule, label the boundaries and grains
adjoining them from i = 1 to k (k = 2, 3, …), and
denote by Ni the normals to these boundaries. In
accordance with Taylor’s model, plastic strain of each
grain considered at the microscopic level is the result
of uncorrelated motion of a large number of individual
lattice dislocations belonging to different slip systems
under the action of external stresses σext. These dislo-
cations emerging at a boundary produce on it addi-
tional disorientation  of deformation origin,
which (other conditions being the same) depends on
orientation Ni of the boundary. We denote by ωj the
nullity vector of disorientations of deformation origin
at the boundaries forming the jth joint. According to
[13, 14], it is given by

(2)

Let us calculate vector ωj using the classical Tay-
lor’s model [17], which is known to be based on the
following postulates.

P1. Within a grain, the plastic strain is assumed to
be spatially uniform.

P2. At the microscopic level, plastic strain tensor of
the ith grain can be written in the form

(3a)

where n and b are the normal vector to the slip plane
and the Burgers vector of lattice dislocations; ρs and λs
are the density and average path length of lattice dislo-
cations, and s is the number of effective slip system.

def
iΘ

−≡ − Δ = − × ε − ε ⋅∑ ∑
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Fig. 1. Schematic representation of triple joint of grains.
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P3. Tensors  and Ei written in the same system of
coordinates are identical:

(3b)
P4. To satisfy condition (3b), simultaneous loading

up to five dislocations slip systems in a grain is permitted.
P5. Plastic strain tensors are equal to the mac-

roplastic strain tensor of the polycrystalline aggregate
at the point of location of the ith grain:

(3c)
Substituting this relation into Eq. (2), we can easily

see that nullity vector ωj of disorientations of deformation
origin in the classical dislocation model of plastic defor-
mation of polycrystals is identically equal to zero at all
joints and kinks of grain boundaries without any excep-
tion (at least, for a uniformly deformed polycrystal).

1.3. Mesolevel of Plastic Strain
The reason for such a strange (at first glance) con-

clusion is that the postulates underlying the Taylor
model describe the actual process of plastic deforma-
tion occurring with conserved continuity of a poly-
crystalline aggregate only approximately. Indeed,

(i) the continuity condition requires that not the
plastic deformation tensor as in relation (3c), but total
deformation tensors (i.e., the sum of its elastic and
plastic components [18]) be equal at grain boundaries;
for this reason, the mismatch of plastic strains of
neighboring grains by the mismatch of their elastic
strains is permissible;

(ii) plastic straining of a crystal is an inertial pro-
cess; i.e., leveling of plastic strain tensors of neighbor-
ing grains requires a finite time; for this reason, plastic
strain tensors εi of neighboring grains are necessarily
different at any instant;

(iii) plastic deformation of a grain occurs nonuni-
formly over the volume because with increasing εi,
grain boundaries become 2D sources of long-range
stresses, the structure and intensity of which depend-
ing on εi and facet orientation Ni. For this reason, grain
regions belonging to different facets experience differ-
ent strains, which ultimately leads to splitting of the
initially uniformly oriented grain into an aggregate of
disoriented mesovolumes.

Other reasons for violation of basic conditions (3c)
also exist, but their analysis is beyond the scope of this
article. It is sufficient to assume for further analysis
that joint disclinations of deformation origin exist and
their Frank vector is defined by Eq. (2).

2. FIELDS OF ELASTIC STRESSES 
GENERATED BY JOINT DISCLINATIONS 

OF DEFORMATION ORIGIN
In the general case, the Frank vector of a joint dis-

clination of deformation origin can have wedge com-

'iε

.i iEε =

( ).i i iE E rε = =

ponent  as well as twist component . If the latter
component differs from zero, the joint disclination of
deformation origin has a complex structure and
includes, in addition to the linear source of internal
stresses located along the joint line, at least one planar
source located along one of the joining boundaries.
Bearing this in mind, we will confine our analysis here
only to a wedge joint disclination of deformation ori-
gin and a will analyze the forces exerted by the wedge
joint disclination on the surrounding lattice disloca-
tions using the simplest 2D model.

Let us place a wedge joint disclination at the origin
of the laboratory system of coordinates with unit vec-
tors (l1, l2, j). We denote the most loaded (acting) slip
systems of dislocations in the ith grain by unit vectors
(n, s)i (i = 1, 2, 3), where s = b/b. Let us consider a test
dislocation placed at the tip of radius vector ri with
polar coordinates (r, φ), where ri is the distance to the
joint disclination and φi is the polar angle measured
from unit vector l1 in the laboratory system of coordi-
nates. For convenience of calculations, we direct l1
along s1. The corresponding geometry is shown in Fig. 1.
In the same figure, symbols Θi denote relative rota-
tions of crystal lattices of neighboring grains. The pos-
itive and negative values of angle Θi correspond to the
lattice rotation in the direction of the right-hand and
left-hand screw, respectively.

In the notation adopted here, force  exerted by
the joint disclination on the test lattice dislocation in
the ith grain can be written in the form

(4)

where G is the shear modulus and ν is the Poisson
ratio. It is independent of the distance to the joint and
is determined exclusively by the observation angle,
being positive in the first and third quadrants and neg-
ative in the second and fourth quadrants. The distribu-

tion of this force expressed in the units of  in

the vicinity of the joint under investigation is shown in
Fig. 2.

Apart from the force exerted by the joint disclina-
tion, test dislocations experience the action of forces
associated with external stresses σext. The total force
acting on a test dislocation in the it grain is given by

(5)

It follows from this expression and Fig. 2 that the
emergence of a joint disclination leads to the forma-
tion of large mesoregions in the initially uniform force
field of a grain in which the forces acting on slip lattice
dislocations can differ significantly in both directions
from the forces averaged over the grain. Since these
forces determine the velocities and densities of dislo-

j
wω j

twω
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nbf
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cation flows, plastic strains in adjacent mesovolumes
are also different. With increasing plastic strain, these
differences increase, and for

(6)

a wall of edge dislocations will align along ray φi + Θi ≈

 in the ith grain because for ω defined by condition

(6), the decelerating field from a joint disclination of
deformation origin attains and exceeds the external
field.

The estimate obtained for ωc is obviously exagger-
ated because there is no need in stopping the disloca-
tion f low completely for producing a tilted wall of edge
dislocations emerging from the joint. Such a wall can
also appear in a softer dynamic regime.

To verify this hypothesis, we performed computer
simulation.

3. COMPUTER SIMULATION
OF THE CRITICAL POWER OF A JOINT 

DISCLINATION OF DEFORMATION ORIGIN
3.1. Computer Experiment

Analysis of the dislocation f low dynamics in the
total field of external stresses σext and the elastic field
of wedge joint disclination was carried out for a rect-
angular grain5 (elastically isotropic medium) of size

5Upper grain in Figs. 1 and 2.

ext ext
4 (1 ) 8.4c G G

⎛ ⎞ ⎛ ⎞σ σω ≥ ω = π − ν ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

4
π

(d × d), where d = 2 μm. The joint disclination is at the
center of the lower boundary of the grain. In our cal-
culations, we used the method of dynamics of discrete
dislocations [19] modified in [20–23] for analyzing
the kinetics of a dislocation ensemble in the elastic
field of the disclination.

Each dislocation was characterized by Burgers vec-
tor b parallel to the direction of dislocation slip, coor-
dinates (x(k), y(k)), and velocities (ν(k)), k = 1,…, N,
where N is the number of dislocations. The contribu-
tion of inertial terms to the equation of motion of the
dislocation is assumed to be much smaller than from
the terms associated with dynamic friction. In this
case, the equation for the velocity of the kth disloca-
tion in the quasi-viscous approximation has the form

(7)
where M(S) is the mobility of dislocations in the sth slip
system, ns ⋅ σΣ ⋅ b is the force acting on the kth disloca-
tion in slip plane ns, and σΣ = σext + σint, σint being the
internal stress tensor defined as the total elastic field
produced by the joint dislocation and other disloca-
tions.

In this model, we assume that the plastic deforma-
tion in a grain begins when the shear stress attains crit-
ical value σc. Multiplication of dislocations in the bulk
of the grain is characterized by a certain rate of gener-
ation of dislocation pairs of opposite sign in slip planes
separated by distance xc = Db/σc from each other (σc is
the threshold stress of actuation of a source of the
Frank–Read type [24], D = G/2π(1 – ν); at stress σΣ <
σc, the dislocations of the generated pair annihilate).
The coordinates of the dislocation pair were generated
at random in the domain under investigation in accor-
dance with the uniform distribution law. The recombi-
nation processes are taken into account in the model.
The annihilation of dislocations of opposite signs
moving towards each other is characterized by the cap-
ture cross section Sa = π /4, where xa = 0.25xc. The
sink is taken into account as the disappearance of dis-
locations reaching the lateral surfaces of the upper
grain. In our calculations, we used the values of
parameters σc ≈ 2.5 ×  G, b = 0.25 × 10–9 m, and
dislocation mobility M(s) ~ 10–4 Pa–1 s–1, which ensure
the plastic strain rate  = 10–3 s–1 averaged over the
grain volume.

4. RESULTS OF SIMULATION
For the chosen value of external stress from the

interval (10–3 to 2 × 10–3)G, the evolution of the dislo-
cation ensemble was investigated for increasing joint
disclination power. At a low disclination power
(smaller than the critical value), regions of excess den-
sity of short-term dislocations with the same sign
(“loose” subgrain boundaries) are formed. However,
these formations are unstable and are periodically dis-

( ) ,k s
sM Σν = ⋅ σ ⋅n b

2
ax

−310

ε�

Fig. 2. Diagram illustrating the distribution of forces
exerted by a joint disclination on a test dislocation in dif-
ferent grains forming a triple joint.
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rupted by the external field (Fig. 3a). With increasing
joint disclination power ω, its critical value ωc is
attained, at which the spatial distribution of disloca-
tions statistically changes insignificantly, being local-
ized in the vicinity of the disclination in the form of a
narrow broken subgrain boundary (Fig. 3b).

The steady-state nature of the subgrain boundary is
manifested in the fact that it looses and absorbs on the
average the same number of dislocations per unit time.

The dependence of the critical value of disclination
power ωc on the reduced external shear stress σext/G is
shown in Fig. 4. Each point on this curve is the average
value of ωc obtained from the results of five computer
experiments.

It can be seen from Fig. 4 that the dependence of ωc

on σext is close to linear,

(8)
ext

2.2 0.002c G
σω = +

(approximation by the least squares method). Slight
deviations from linearity are due to the statistical
nature of formation of dynamic walls of dislocations.
As expected, dependence (8) corresponds to the avail-
able experimental data much better than dependence
(6). It shows that for stresses σext/G ~ 10–2 to 2 × 10–2

typical of the temporal limit of ultimate strength of bcc
materials, the critical power of the joint disclination is
ωc ~ 1.4°–2.8°. This result is in good agreement with
available experimental data [1].

CONCLUSIONS
The above analysis makes it possible to draw several

conclusions important for understanding the nature of
fragmentation.

1. Fragmentation is a consequence of anisotropy of
plastic f low of crystalline solids; in plastically
deformed amorphous media, it must be absent in
accordance with the above model.

2. Fragmentation of polycrystals is a consequence
of the difference in macroplastic strains of adjacent
grains.

3. The sequence of cause-and-effect relations lead-
ing to fragmentation of crystalline solids and to the
formation of plastic strain mesolevel in them can be
described as follows. The difference in macroplastic
strains of joining grains (plastic strain macrolevel)
leads to the emergence of disorientations of deforma-
tion origin (planar rotational-type mesodefects) at
joining large-angle grain boundaries. In turn, mis-
alignment of these disorientations leads to the forma-
tion of joint disclination (linear mesodefects of the
rotational type) and to an increase in its power in the
course of plastic deformation The elastic field of joint
disclination caused a perturbation of the laminar f low
of lattice dislocations (plastic strain microlevel), lead-
ing to the emergence and evolution of broken disloca-

Fig. 3. Typical dislocation structures formed near a joint
disclination in the field of external stresses σext/G = 10–2:
(a) ω < ωc; (b) ω > ωc.
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tion boundaries, viz., partial disclinations of deforma-
tion origin (plastic strain mesolevel).

These interrelations can be observed quite clearly
using the simplified model proposed here. The
description of the initial stage of fragmentation in real
polycrystals is a much more complicated problem. It is
necessary to take into account multiple slips, a more
complex geometry of joint boundaries, and the effects
associated with the formation of planar sources of
internal stresses on joining boundaries. These ques-
tions will be investigated in subsequent publications.
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