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Abstract—The stability of a heavily charged drop in a weak uniform electrostatic field (in which the equilib-
rium shape of the drop can be represented by a prolate spheroid) is calculated in the fourth order of smallness
in the eccentricity of the spheroidal drop and in the first order of smallness in the drop oscillation dimension-
less amplitude. It is found that as the order of approximation in eccentricity grows, so does the number of
modes interacting with the initially excited mode. In the given order of smallness, the preferred (initially
excited) mode is shown to interact with the nearest eight modes. The drop becomes unstable if such is the
second mode.
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1. INTRODUCTION
The stability of the drop’s surface is a subject of

much scientific and applied interest. Charged drops
subjected to an electrostatic field are observed in thun-
der clouds and ion–cluster–drop beams resulting
from electrodispersion of liquids in liquid-metal ion
sources and mass-spectrometers analyzing thermally
unstable and volatile liquids. They also appear at the
electrospraying of paint-and-lacquer materials, fuels,
and insecticides (see, for example, [1–3]). Of special
interest is the stability of the drop’s surface (hereinaf-
ter surface, unless otherwise stated) in different
(acoustic, aerodynamic, electromagnetic, electro-
static) levitators (contactless suspensions) [4–10].
Levitators are finding wide application in advanced
technologies of high-purity materials. Also, they are
applied in attempts to check the Rayleigh criterion for
the stability of a drop against its charge [4–11].

The equilibrium shape of a charged drop in an elec-
trostatic suspension (when an external uniform elec-
trostatic field and the gravity field collinear to it keep
the drop suspended) was found in [12]. Stability con-
ditions for a charged drop in uniform electrostatic and
gravitational fields were analytically obtained in [13],
and nonlinear corrections to the oscillation frequency
of the fundamental mode were analytically derived in
a quadratic (in amplitude) approximation in [14].

Our goal is to study the stability of oscillations of a
heavily (maximally) charged drop placed in a weak
electrostatic field that merely sets a preferred direction
in which polarization of the drop can be neglected.

2. PROBLEM DEFINITION
Consider a drop of an ideal incompressible con-

ducting liquid with density ρ and surface tension coef-
ficient σ that bears charge Q. The drop is in an electro-
static suspension; that is, oppositely directed collinear
electrostatic field E0 and gravitational field g keep it
quiescent. In the absence of the fields, the drop is a
sphere with radius R.

Let us calculate the oscillations of the drop in a
spherical coordinate system centered at the center of
mass of the drop. The problem will be solved in terms
of dimensionless variables ρ = σ = R = 1.

Let a heavily charged drop be placed in a weak elec-
trostatic field that is collinear to the gravitational field.
Under such conditions, the equilibrium shape of the
drop is close (in an approximation linear in eccentric-
ity squared) to a spheroid extended along the electro-
static field. In the dimensionless variables adopted,
the free surface of the drop is described by the expres-
sion [12]
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Here, w and W are Rayleigh and Taylor parameters,
respectively.

Mathematically, the problem of the drop’s oscilla-
tions under such conditions is stated as

where

Here, u(r, t) and pin(r, t) are, respectively, the veloc-
ity field and pressure in the drop; E(r, t) is the electric
field strength near the drop; Φ(r, t) is the electric field
potential (E(r, t) = –∇Φ(r, t); pσ(r, t) is the capillary
pressure on the surface; pq(r, t) is the pressure of the
electrostatic field plus the pressure of the drop’s
charge electrostatic field; p0 is the constant external
pressure; and

is the deviation of the equilibrium spheroidal shape of
the drop from the initially spherical one Eq. (1).

The problem is complemented by the constancy
conditions for the volume and charge of the drop and
also by the immovability condition for its center of
mass,
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3. CALCULATION OF THE DROP’S 
OSCILLATIONS

Using the model of liquid potential f low, we pass
from the velocity vector to scalar hydrodynamic
potential ψ(r, t) and from the field strength vector to
electrostatic field potential Φ(r, t),

The problem will be solved asymptotically in an
approximation linear in the dimensionless amplitude
of drop’s oscillations, ζ ~ |ξ|, in the fourth order of
smallness in eccentricity e of its equilibrium (spheroi-
dal) shape. Terms up to the order of smallness ζe4 will
be left. Since the f low inside the drop is due to a sur-
face perturbation, we have ψ ~ ζ in the dimensionless
variables adopted. It should be borne in mind that the
charge by itself does not deform a spherical drop and
the eccentricity of a spheroidal drop squared is pro-
portional to the external field strength squared [13];
therefore, when writing solutions, we will take into
account that

The electrostatic potential is represented as

where Φ0(r) is the electrostatic potential near the drop
with an equilibrium shape and Φ1(r, t) is the correc-
tion to the electrostatic potential of the drop with an
equilibrium shape. This correction is due to a surface
perturbation. Having substituted the expansion of the
electrostatic potential into the problem, we divide it
into subproblems of the zeroth and first orders of
smallness.

Below, the dependences of a number of quantities
on azimuthal angle φ will be neglected. Such an
assumption allows us to cut the amount of computa-
tion without loss of generality.

The subproblem of the zeroth order of smallness
refers to the undisturbed (equilibrium) surface, and its
essence is to calculate the electrostatic field near the
equilibrium drop,

The electric field potential in the zeroth approxi-
mation in oscillation dimensionless amplitude is given
by (up to terms ~e4),
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where For the subproblem of the first order of smallness,
we have

 (2)

 (3)

 (4)
where

Symbols ∂z and ∂z, x designate the first and second
derivatives with respect to argument z and z and x,
respectively., and f1(t) is a constant of integration over
the spatial coordinates, which is a function of time in
the general case.

In a spherical coordinate system with the origin at
the center of mass of the drop, the solution to the
Laplace equation has the form

 (5)

 (6)

where Pn(μ) are axisymmetric Legendre polynomials
of order n [15].

Surface perturbation ξ(θ, t) should be sought in the
form [14]

 (7)

were An(t), Bn(t), and αn(t) are unknown functions of
time and other physicochemical parameters of the
problem.

Having substituted projects (5)–(7) of solutions
into Eqs. (2)–(4), we rearrange terms so that the equa-
tions represent expansions in Legendre polynomials.
Then, Eqs. (2)–(4) can be satisfied by setting the coef-
ficients at the Legendre polynomials equal to zero.
Leaving the terms of the order of smallness ~e4, we
arrive at the following relationships between the coef-
ficients of Eqs. (5)–(7) and kinematic condition (2):
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From equipotentiality condition (3), we obtain

 (9)

From dynamic equation (4) it follows that

 (10)

where , , and  are some functions the form
of which is omitted here because of awkwardness.

The amplitudes of hydrodynamic and electrody-
namic potentials will be sought in the form of expan-
sions in eccentricity e,

From Eqs. (8) and (9), one can find relationships
between amplitudes (t) and (t) and, having
substituted these relationships into Eq. (10), obtain a
set of coupled evolutionary equations for the ampli-
tudes of modes (accurate to ~e4),

 (11)

Here,  are coefficients depending on physico-
chemical parameters of the problem and ωn is the fre-
quency of the nth mode,

Nonlinear frequency correction  arising when
the equilibrium shape of the drop is nonspherical has
the form
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It was shown [11] that up to the order of smallness
ζe4 (adopted in our consideration), the nth mode is
excited on the surface together with eight modes cou-
pled with it. Solution (11) obtained by the method of
successive approximations has the form

 (12)

where

Here, βn are constants of integration and  are
coefficients depending on the physicochemical
parameters of the problem (they are omitted because
of awkwardness). Compensatory expressions for the
amplitudes of the zeroth and first modes can be
derived by satisfying the constancy condition for the

volume of the drop and the immovability condition for
its center of mass,
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4. RESULTS AND DISCUSSION
Coefficients βn in expression (12), being constants of

integration, are found from initial conditions. They
determine the type of interaction between modes and
the contribution of each mode to the shape of the drop.

As has been mentioned above, each excited mode
generates eight other modes (accurate to order of
smallness ~ζe4). In calculations of order of smallness
ζe2 performed for physically similar problems (prob-
lem of electrostatic stability of a solitary charged sphe-
roidal drop or the problem of stability of an uncharged

drop in an external uniform electrostatic field), it was
shown that the initially excited mode interacts with
two or four nearest modes depending on the problem.

Consider the situation when only one mode is
excited at a zero instant of time. Then, the set of initial
conditions is as follows:

 (15)

2 2 2 3

3 2 2 2
27 (21(1 ) (15 22 8 ) (3283 6028 3028 256 )),
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W w W W W w W W
− − − + + − + −=

− + − − − + − +

−=
+ − − − + − +

3/2 2

4 2 2 2
432 (1 ) ,

(126 35(1 ))(1 ) (5 4 ) 54 (89 102 16 )
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w W W W w W W
3 2 3

5 2 2 2
270 (110 209 95 4 ) .
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3 4
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n n n

n n

n jn dd j
dt dt

Fig. 1. Time evolution of the amplitudes of the initially excited (second) mode and those coupled with it: (a) general pattern of
the mode amplitude evolution, (b) amplitude evolution of only those modes coupled with the initially excited one, and (c) general
pattern of surface perturbation ζ(t) when the second mode is initially excited (hereinafter, the number by the curves is the mode
number).
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Substituting Eqs. (12) of the evolutionary system
into initial conditions (15) and leaving terms ~ζe4, we
arrive at a set of nine equations (for the zeroth and first
modes, we use expressions (13) and (14), respectively).
Having found coefficients βn from the resulting set of
equations and having substituted them into (12), we
obtain final expressions for amplitudes αn(t), which
determine the time evolution of the nine coupled
modes.

In numerical calculations, the Rayleigh parameter
and the Taylor parameter were set equal to W = 0.9772
and w = 1.283 × 10–4, respectively, and the radius of
the drop was taken to be R = 0.1 cm. It is at such values
of these parameters that the drop is stable and quies-
cent in suspension [13]. Note that the critical value of
the Rayleigh parameter for a solitary charged drop is
W = 1 and the Taylor parameter for an uncharged drop
in a uniform electrostatic field is w ≈ 0.05 [13]. The
density of the liquid was set equal to ρ = 1 g/cm3; the
surface tension coefficient, σ = 73 dyn/cm (both val-
ues are for water); and the initial perturbation ampli-
tude, ζ = 0.1R. The eccentricity of the equilibrium
shape of the drop was calculated by the formula e2 =
9w(1 – W) and was found to be e2 ≈ 0.0506. Dimen-
sionless free fall acceleration g was estimated as g =
980.7(ρR2/σ ≈ 0.134) (for the nondimensionalization
adopted here).

Figure 1a shows how the amplitudes of the initially
excited mode (α2) and other modes coupled with it
(α0, α1, α3, α4, α5, α6) vary with time. Rayleigh param-
eter W is 0.0002 smaller than the critical value (W =
0.9774), and Taylor parameter w is taken so as to satisfy
the suspension condition at the given value of W (w =
1.283 × 10–4). It is seen that the amplitude of the third
mode is three times smaller than that of the second
one and the amplitude of the fourth mode is roughly
three times lower than that of the third mode. The
amplitudes of the other modes are very small and
almost merge with the abscissa axis. In Fig. 1b, the

evolution of these modes is shown on a two orders of
magnitude larger scale on the vertical axis and within
a shorter time interval (abscissa axis). Even in this
case, the amplitude of the zeroth mode is hardly dis-
cernible from the abscissa axis. It should be noted that
the excitation of the zeroth and first modes is a com-
pensatory process; therefore, their amplitudes are
negative. Figure 1c illustrates the time evolution of
surface perturbation ζ(t) of the drop when the second
mode is initially excited. It is obvious that interaction
between the second and neighboring modes redistrib-
utes the initial deformation energy among all modes
involved in interaction.

Figure 2a shows how the amplitudes of the initially
excited sixth mode α6 and other modes coupled with it
(α2, α3, α4, α5, α7, α8, α9, α10) vary with time for the
same Rayleigh and Taylor parameters as in Fig. 1a.
The sixth mode has a maximal amplitude, whereas the
amplitudes of the other modes are small. This is shown
in Fig. 2b, where the evolution of modes 2–5 and 7–
10 coupled with the initially excited sixth mode is pre-
sented on an enlarged (by 10 times) scale. The farther
a given mode is from that excited at an initial instant of
time, the weaker is their coupling and the smaller is the
contribution of the former to the shape of the surface, as
expected from solution (12) and is observed in Fig. 1a.

The onset of instability of coupled modes is of most
interest. Figure 3a shows how the amplitudes of the
initially excited second mode α2 and other modes cou-
pled with it (α0, α1, α3, α4, α5, α6) vary with time.
Rayleigh parameter W is W = 0.9774, and Taylor
parameter w is w = 1.282 × 10–4. At such values, the
drop loses stability. It is seen from Fig. 3 that the
modes coupled with the second mode also become
unstable, although the charge of the drop is subcritical
for them, their instability being oscillatory. This is
because the amplitudes of the modes coupled with the
fundamental (second) mode are expressed through
the amplitudes of the latter. Figure 3b shows the time

Fig. 2. Time evolution of the amplitudes of the initially excited (sixth) mode and those coupled with it: (a) general pattern of the
mode amplitude evolution and (b) amplitude evolution of only those modes coupled with the initially excited one. All other
parameters are the same as in Fig. 1 (hereinafter, figures by the curves are mode numbers).
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evolution of amplitudes α0, α1, α3, α4, α5, and α6 on an
enlarged scale.

In Fig. 4a, the amplitudes of the initially excited
(sixth) mode and of the modes coupled with it are
shown versus the time for the same Rayleigh and Tay-
lor parameters as in Fig. 3 (W = 0.9774, w = 1.282 ×
10–4). It is expected that the second mode will be
unstable and the others will be stable at such values of
the parameters. However, as follows from Fig. 4, the
amplitudes of the modes (from the second to the sixth)
build up in an oscillatory manner. The initially excited
sixth mode loses stability at the given values of the
Rayleigh and Taylor parameters, which are subcritical
for it. This is because the sixth mode interacts with the
second (unstable mode). Thus, in the order of approx-
imation adopted (~ζe4), the instability of the second
mode makes all the modes coupled with it unstable
(modes n = 0–6). The rest of the modes (n = 7–10)
remain stable. In Fig. 4b, the time evolution of ampli-
tudes α2, α3, α4, and α5 under the same conditions as
in Fig. 4a are shown on an enlarged scale.

The same behavior of interacting surface modes
near the instability threshold were described in [16] for

a spheroidal charged drop in the absence of an electro-
static field.

It should be noted that the number of modes cou-
pled with the initially excited one grows with the field
nonuniformity around the drop (that is, with increas-
ing order of smallness in eccentricity e of a spheroidal
drop in a uniform electric field) [17]. The mode cou-
pling coefficient decreases as the number of the mode
under observation moves away from the number of the
initially excited mode [18].

CONCLUSIONS
It is shown that when the calculation accuracy

(order of smallness in the eccentricity) rises, so does
the degree of coupling between modes (i.e., the num-
ber of interacting modes). The intensity of mode inter-
action drops with “distance” between the number of a
given mode and the number of a mode excited at an
initial instant of time. In drop instability calculations,
it is necessary to take into account all coupled modes,
since at the instant of disintegration of the drop (at the
instability threshold), even those slightly contributing
to its shape may influence disintegration. The drop

Fig. 3. (a) Same as in Fig. 1 but for the combination of the
Rayleigh and Taylor parameters (W = 0.9774, w = 1.283 ×
10–4) that are overcritical for the second mode and sub-
critical for other modes coupled with the initially excited
(second) one and (b) same as in Fig. 3a on an enlarged
scale in the vertical axis.
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Fig. 4. (a) Same as in Fig. 2 but for the combination of the
Rayleigh and Taylor parameters (W = 0.9774, w = 1.283 ×
10–4) that are overcritical for the second mode and sub-
critical for the modes coupled with the initially excited
(sixth) one and (b) same as in Fig. 4a on an enlarged scale
in the vertical axis for the second, third, fourth, and fifth
modes separately.
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becomes unstable when the lowest of modes involved
in interaction becomes unstable.
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