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Abstract—Size distribution functions of colloid particles are obtained with the aid of dynamic light scattering
for both polarized and depolarized components. Electron microscopy of the colloid particles is used to con-
struct size distribution histograms. Numerical analysis yields good agreement of the experimental and theo-
retical size distributions. The size distribution function is derived from the solution to the corresponding inte-
gral equations using the Tikhonov regularization procedure.
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INTRODUCTION

There has been considerable recent interest in the
study of dispersed systems of the sizes of particles,
which range from several to several thousands of
nanometers. In most systems, the particles exhibit dif-
ferent electric charges, sizes, and electric parameters,
so that the particles are distributed with respect to geo-
metrical and electric parameters. The properties of
systems substantially depend on such distributions,
and, hence, the analysis of the distributions is a topical
problem. A detailed study of the properties of dis-
persed systems, in particular, colloids is possible only
with the aid of a combination of mathematical, physi-
cal, and chemical methods.

The purpose of this work is the development of a
mathematical model for the determination of sizes of
particles in suspension using the results of the dynamic
light scattering (DLS) by colloid particles in solutions
and the best results for model polydispersed solutions.

The work consists of several parts. The first part is
devoted to the DLS method, which is widely
employed in the study of polydispersed solutions. In
the second (experimental) part, we consider the prob-
lems of study of depolarized and polarized compo-
nents of scattered light and derive Fredholm integral
equations of the first kind to determine size distribu-
tion function of colloid particles for both polarized
and depolarized components of scattered light using
the autocorrelation function that results from the DLS
measurements. In the third part, we use the Tikhonov
regularization procedure to solve the integral equa-
tions.

1. DYNAMIC LIGHT SCATTERING
The DLS method is widely used in the study of

polydispersed solutions in physics, chemistry, biology,
etc. The DLS method has several advantages: rela-
tively short experimental time, low experimental costs,
and possibility of the analysis of data that correspond
to a wide range of distributions for particles with dif-
ferent molecular masses.

Note that the DLS theory must be used at relatively
low concentrations of particles when the distances
between particles are significantly greater than the
particle sizes and the secondary light scattering can be
disregarded.

The measurements of particle sizes are based on the
analysis of intensity f luctuations of scattered light in
the volume that contains colloid particles in solution
at different time moments. The intensity f luctuations
of scattered light result from the inhomogeneity of the
medium. Random motion of particles that is caused by
uncompensated impacts of molecules in solution leads
to the intensity oscillations relative to a mean level.
The frequency of such oscillations can be used to
determine the diffusion coefficient of colloid particles,
which depends on the particle sizes.

The autocorrelation function of light scattering
determines the characteristic scales of time intervals
over which the motion of scattering centers is cor-
related (i.e., depends on the positions at previous
moments). To observe time correlations of the scat-
tered radiation, we must use laser radiation, which is
coherent and monochromatic. The size of the objects
under study is comparable with the optical wavelength.
For smaller particles, the incident radiation is uni-
formly scattered over all directions. In this case, the
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autocorrelation function can be used to determine the
correlations of intensity f luctuations. Note that the
DLS method is the method for the study of structure
and dynamics of liquid media based on the analysis of
time autocorrelation function of the intensity f luctua-
tions of scattered light. The further processing makes it
possible to obtain the desired size distribution of par-
ticles.

Using the approach of [1], we consider normalized
autocorrelation function of the light-scattering inten-
sity:

 (1)

and the normalized autocorrelation function of the
field of scattered radiation for the further calculation
of the desired parameters (sizes and diameters of par-
ticles and coefficients of rotational and translational
diffusion) [1, 2]

Here, brackets 〈 〉 denote averaging over the ensem-
ble of particles, and variable q is given by [3]

 (2)

where λ is the wavelength and θ is the scattering angle.
Then, the relationship of the normalized autocor-

relation function of the light-scattering intensity
(measured quantity) and the field autocorrelation
function is established by the Siegert equation [4]:

 (3)
where β is the coherence factor that depends on the
laser beam and tuning of instrumental optics and A is
the constant that is unity.

We may assume that the coefficient is β = 0.7 for
the experiments on dynamic scattering.

When a laser beam passes through the liquid under
study with suspended dispersed particles, the radiation
is partially scattered by f luctuations of concentration
of the number of particles that are involved in the
Brownian motion.

In accordance with the Onsager hypothesis, the
relaxation of microscopic f luctuations of concentra-
tion to the equilibrium level can be described using the
first Fick law (diffusion equation). In this case, the
autocorrelation function of the light-scattering inten-
sity exponentially decays with time and the character-
istic relaxation time is one-to-one related to the diffu-
sion coefficient of particles.

In the simplest case (monodispersed solution that
contains noninteracting spherical particles with iden-
tical sizes), the power spectrum of photocurrent rep-
resents a Lorentzian curve [5] with halfwidth Γ and the
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intensity correlation function is the exponential func-
tion with relaxation time Tc.

In accordance with the results of [1, 4, 5], the nor-
malized field autocorrelation function of scattered
light is represented as

 (4)
In this case, coefficient Γ is related to the physical

parameters of the medium [6]:

 (5)

where D is the diffusion coefficient and quantity q is
given by expression (2).

For polydispersed solutions with different sizes of
particles, the spectrum of photocurrent represents a
continuous set (integral) of Lorentzian curves with
different halfwidths. Therefore, the distribution of
particles with respect to sizes (diffusion coefficients)
can be determined from the solution to the inverse
spectral problem represented as the following integral
equation [5, 6]:

 (6)

This integral equation provides the main principle
of data processing in the DLS method.

In accordance with the Stokes–Einstein law, the
motion of colloid particles in liquid can be described
using the coefficients of translational and rotational
diffusion. The latter coefficient is determined by the
rotational action of the Brownian motion. Thus, we
have [1, 5]:

 (7)

 (8)

where Dt is the coefficient of translational diffusion, Dr
is the coefficient of rotational diffusion, k is the Boltz-
mann constant, T is the absolute temperature, ν is the
viscosity of solution, and r is the hydrodynamic radius
of particle.

2. EXPERIMENTAL
We study aqueous colloids of diamond particles.

The particles are produced using an industrial syn-
thetic method and exhibit polycrystalline structure
and irregular shape.

For preparation of samples, diamond powder is
weighted and mixed in water. The resulting
polydisperse system is ultrasonically processed. Col-
loids with the needed concentration are obtained
using dilution of the concentrated systems. The parti-
cles under study differ by geometrical characteristics.
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Distilled water serves as the dispersion medium.
We remove dust that disturbs the results of scattering
using a reverse-osmosis membrane with a pore size of
200 nm. Multiple filtering through such a membrane
makes it possible to obtain colloids that are virtually
free of dust. Knowing the size distribution of particles
and density of diamond, we use dilution to obtain the
needed concentration of particles in the system under
study. We study the colloid system with a concentra-
tion of particles of 0.0266 mg/mL. Prior to experi-
ments, the colloids are ultrasonically processed at fre-
quencies of 22 and 40 kHz, since the colloids are ther-
modynamically unstable and form aggregates.

A Photocor Complex spectrometer is used to study
the light scattering by colloid particles. The working
principle of the spectrometer is based on the DLS
(photon correlation spectroscopy). In the experi-
ments, the laser beam passes through the liquid that
contains suspended dispersed particles and the radia-
tion is partly scattered by the f luctuations of the con-
centration of particles. The particles are involved in
the Brownian motion that can be described using the
diffusion equation. The solution to such an equations
yields a relationship of halfwidth Γ of the spectrum of
scattered light (or characteristic time Tc of the relax-
ation of f luctuations) and diffusion coefficient D
(expression (5)).

The scattered radiation is detected by a photode-
tector the output signal of which is processed using a
digital correlator. The resulting autocorrelation func-
tion can be used to calculate the mean size or size dis-
tribution of particles (expressions (11) and (12)).

The measurements are performed at scattering
angles ranging from 20° to 150° (the accuracy is 0.01°),
the refractive index of water is 1.3310, the refractive
index of diamond is 2.408, and the wavelength of the
incident radiation is 654 nm.

2.1. Study of the Depolarized and Polarized Components 
of Scattered Light

In the DLS method, the incident radiation is nor-
mally polarized but the presence of depolarized com-
ponent is also possible.

Thus, the intensity of the autocorrelation function
of polarized scattered light can be represented as a dis-
crete exponential decay that can be related to the coef-
ficient of translational diffusion. The relaxation rate of
such a regime can be represented in terms of the decay
time of the autocorrelation function for the polarized
component of scattered light [4]:

 (9)
The analysis of the polarized component of the

scattered radiation can be used to study the translation
diffusion of particles. A detailed analysis of the rota-
tional dynamics necessitates the study of the depolar-
ized component. The measurements of the depolar-

2.tD qΓ =vv

ized component of scattered radiation are often used
for the study of parameters of relatively small colloid
particles. In this work, the horizontally polarized scat-
tered radiation (depolarized component) is measured
using polarizer (vh).

The intensity of the autocorrelation function of the
depolarized scattered radiation can be represented as a
sum of two discrete exponential decays depending on
the coefficients of translational and rotational diffu-
sion, respectively [4]:

 (10)

It was mentioned in [7, 8] that the polarized radia-
tion can be used to characterize the translational diffu-
sion coefficient. The rotational diffusion coefficient
was disregarded. However, in this work, we numeri-
cally choose functions that determine translational (7)
and rotational (8) diffusion for the kernel of integral
equation (6) (Fig. 1). The results show that both trans-
lational and rotational diffusion must be taken into
account for the vertically polarized radiation.

Based on expressions (4), (9), and (10) and numer-
ical approximation, we represent the normalized field
function for the polarized scattered radiation for mon-
odisperse systems:

Here, quantities Dt and Dr are given by expressions
(7) and (8), respectively; vv is the polarized compo-
nent; and vh is the depolarized component.

We consider the normalized field function for the
polarized scattered radiation. Using expressions (6)
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Fig. 1. Selection of functions that determine the transla-
tional and rotational diffusion for the kernel of the integral
equation.
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and (7), we obtain the following formulas for
polydisperse systems:

 (11)

 (12)

where rmin is the minimum size of particles, rmax is the
maximum size of particles, and γ is the coefficient
related to the anisotropy of particles (γ ≈ 1.2).
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Note that Eq. (11) and (12) are the Fredholm inte-
gral equations of the first kind with respect to size dis-
tribution function of colloid particles f(r).

For the dispersed system with a relatively low con-
centration of particles in the absence of interaction
between particles when the secondary scattering by
particles is relatively low, the experimental effect
caused by external action on the system is normally
determined by the sum of contributions of single par-
ticles and can be represented using expressions (11)
and (12). We choose the wavelengths of the incident
radiation in such a way that the oscillation character of
the diffraction by particles is absent.

3. DETERMINATION OF THE SIZE 
DISTRIBUTION OF COLLOID PARTICLES

In this part, we consider the solution to integral
equations (11) and (12) that makes it possible to deter-
mine size distribution function f(r) for colloid particles
using DLS for polarized and depolarized components.
In such formulation, integral equations (11) and (12)
are mathematically classified as ill-posed problems.
Several methods can be used to numerically determine
function f(r) using Eqs. (11) and (12) but strict rules for
the selection of solutions are missing. In our opinion,
the Tikhonov regularization procedure [9, 10] must be
preferred.

To determine the size distribution function of dia-
mond particles, we preliminarily perform electron
microscopy. Figure 2 presents the electron micropho-
tographs of the samples at different resolutions and
scales. Figure 3 shows the histogram that characterizes
the size distribution for the dispersed phases under
study. It is seen that the size of particles ranges from 50
to 300 nm.

Without violating generality and correctness of the
formulation of the problem, we approximately con-

Fig. 2. Electron microphotographs of diamond particles that are obtained using transmission electron microscope at different res-
olutions.
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Fig. 3. Histogram that characterizes the size distribution of
particles.
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sider diamond particles as spheres in the first approx-
imation.

Based on such an assumption, we calculate the
scattering indicatrix of spherical particles (Mie prob-
lem) for the vertically polarized component of radia-
tion with allowance for the multimodal distribution of
the samples with respect to sizes and compare the
result with the experimental curve that is obtained
using the DLS method (Fig. 4).

The comparison of the curves shows good agree-
ment of the theoretical and experimental results and,
hence, proves the above hypothesis. 

We consider the Fredholm integral equation of the
first kind with smooth kernel K(x, s):

 (13)

where K(x, s) ≡ exp(–q2Dtτ)(1 + γexp(–6Drτ)) and
f(x) ≡ g(1)(q, τ)vv or K(x, s) ≡ exp(–q2Dtτ)exp(–6Drτ)
and f(x) ≡ g(1)(q, τ)vh, u(s) ≡ f(r), a ≡ rmin, and b ≡ rmax.

We assume that K(x, s) is a real function that is con-
tinuous in the rectangle G = ([c, d]) × [a, b]) and
f(x) ∈ L2[c, d].

We also employ approximation fδ(x) of function
f(x), such that ||f(x) – fδ(x)  ≤ δ.

Based on the a priori assumptions, we suppose that
u(s) is a piecewise smooth function and choose U =

[a, b]. Let function K(x, s) be changed by function
Kh(x, s), such that ||K(x, s) – Kh(x, s)  ≤ h. Then,
we have ||A – Ah  ≤ h, where Ah is an integral
operator that corresponds to kernel Kh(x, s).

Using the Tikhonov procedure for the construction
of the regularization algorithm [9, 10], we proceed
from expression (13) to the minimization of the
smoothing functional

 (14)
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Then, expression (14) is represented as
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The Tikhonov condition [9, 10] follows from con-
dition (15):

Here, Ah is the operator from [a, b] to L2[c, d],
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Fig. 4. Angular dependences of scattering for a spherical
colloid diamond particle: (1) experimental curve that is
obtained with the aid of DLS and (2) theoretical curve that
is calculated using the solution to the Mie problem.
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the operator from L2[c, d] to [a, b], and C is the
operator the matrix of which is determined in [10].

In the above formulation, we consider operator Ah
of the original integral equation that acts from L2[a, b]
to L2[c, d] (i.e., the information regarding the smooth-
ness of the exact solution is missing). Then, the
smoothing functional is written as

and the Tikhonov equation is represented as

1
2W

2 2

2 2[ ] || || | | | | minh L LM u A u f uα
δ= − + α →

where E is the unity operator.
Figures 5 and 6 present the size distribution func-

tions for polarized and depolarized components,
respectively. In this case, the experimental autocor-
relation function is approximated using a cubic poly-
nomial for the vv polarization and the fifth degree
polynomial for the vh polarization. Unknown coeffi-
cients ai (i = ) are determined using the least
squares procedure.

The plots of the size distribution functions of the
colloid particles show a possibility of aggregation of
particles in the interval 150–250 nm. Such a possibil-
ity follows from the analysis of the histogram in Fig. 3,
which was obtained using electron microscopy. The
main peak of the histogram corresponds to the distri-
bution maximum at a size of 100 nm. The TEM image
(Fig. 2) also shows the formation of the low-density
fractal-type nonlinear structures upon drying. Thus,
we may assume that the second peak of the size distri-
bution function corresponds to the aggregation of rel-
atively small particles to large agglomerates.

Note that function uα that minimizes functional
(14) or (15) depends on regularization parameter α.
The regularization parameter corresponds to coeffi-
cients h and δ, which characterize the accuracy of
determination of the kernel of integral equation and
experimental data. In practice, an increase in the noise
in the experimental profile necessitates stronger
smoothing to satisfy the a priori data regarding the
smoothness. Therefore, it is important to determine
the accuracy level of the experimental data and unam-
biguously determine the corresponding regularization
parameter and, hence, solution uα. To determine the
regularization parameter that provides the optimal
relation of the experimental results and a priori data,
we employ the method of relative residual [10]

 (16)
Thus, expression (16) makes it possible to automat-

ically determine the regularization parameter using
the accuracy of the kernel of integral equation and
experimental data (Fig. 7).

CONCLUSIONS
Size distribution functions of colloid particles are

found using the DLS data. The experimental results
are obtained with the aid of a Photocor Complex spec-
trometer for polarized and depolarized components of
the scattered field. The numerical analysis yields good
agreement of the experimental results and theoretical
size distribution of particles in solution. The proposed
approach can be efficient in the study of the DLS by
colloids.

The systems under study and the method for the
calculation of the sizes of particles can be extended to
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Fig. 6. Size distribution function of particles for the depo-
larized field component.
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the solutions of nanotubes, rigid-chain polymers, and
suspensions of structures consisting of nanotubes and
macromolecules. The experimental dependences will
be represented as integral equations with different ker-
nels and results of alternative physical experiments.
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