SOLID STATE

Structural Relaxation of Glassy GeSe₂ during Isothermal Annealing Below and Above *Tg*

E. V. Aleksandrovich*^a* ***, V. S. Minaev***^b* **, and S. P. Timoshenkov***^b*

*a Institute of Mechanics, Ural Branch, Russian Academy of Sciences, ul. T. Baramzinoi 34, Izhevsk, 426067 Russia b National Research University of Electronic Technology, 4806 proezd 5, Zelenograd, Moscow, 124498 Russia *e-mail: evalex@udman.ru*

Received April 29, 2014

Abstract—Raman scattering, X-ray diffraction, and differential scanning calorimetry in the temperature range 300–800 K are used to show that, upon isothermal annealing of glass GeSe_2 powders below the glasssoftening temperature ($T_g = 635 \pm 2$ K), fragments of high-temperature polymorphic modifications having no long-range order (HTPM polymorphoids) decompose and transform into low-temperature polymor phoids (LTPM) with an exothermic effect. A high concentration of LTPM polymorphoids in the glass and their stabilization upon annealing below T_g favor ordering and the appearance of coherent domains of lowtemperature α -GeSe₂ (3D form). Upon annealing above T_g , the reverse LTPM \rightarrow HTPM polymorphoid transformation accompanied by an endothermic effect takes place, which results in the predominance of HTPM β-GeSe₂ polymorphoids (2D form) in glassy GeSe₂ and their crystallization.

DOI: 10.1134/S1063784215040039

INTRODUCTION

Glassy germanium chalcogenides have long attracted attention due to their temperature-depen dent properties and a wide use in integral optical devices [1].

Germanium diselenide has the following crystallo graphic modifications determined with Raman scat tering and X-ray diffraction [2–9]: low-temperature (LT) α -GeSe₂ with a complex three-dimensional structure [2], high-temperature β -GeSe₂ with a layered two-dimensional structure [3], and $\gamma\textrm{-}\mathrm{GeSe}_2$ with a structure similar to that of $SnSe₂$ [4]. Glassy or amorphous GeSe_2 (*a*- GeSe_2) consists of tetrahedral $GeSe₄$ structural units connected to each other through common vertices (LT phase) or common edges (HT phase of $GeSe₂$) [3].

The structural relaxation of glassy $GeSe₂$ in heating was studied in [9–12]. Upon annealing above T_g for \sim 100 h, crystalline LT and HT phases with a monoclinic structure (2D forms) having different lattice parameters were detected in bulk $GeSe₂$ glasses [9– 11]. The HT phase (2D form) and the LT phase (3D form) of α -GeSe₂ with an orthorhombic crystal lattice were detected in amorphous GeSe_2 films upon annealing for 18 h at various temperatures [12].

According to the concept of a polymer–polymor phoid structure of glass and glass-forming liquids [13– 15], the polymorphoids of the HT and LT modifica tions transform into each other in glass and generally accepted glass-softening temperature T_g is the temperature of the reverse T_{w-rev} of the HTPM \leftrightarrow LTPM transformation.

The purpose of this work is to study the structural relaxation in glass GeSe_2 powders annealed at temperatures below and above $T_g(T_{w-\text{rev}})$ by Raman scattering, X-ray diffraction, and differential scanning calo rimetry. The experimental results are analyzed in terms of the concept of a polymer–polymorphoid structure of glass and glass-forming liquids.

EXPERIMENTAL

 $GeSe₂$ glasses were synthesized from special purity grade germanium (GPZ-1) and selenium (OSCh 17- 4, TU 6-09-2521-77) in quartz ampules pumped down to 10^{-2} Pa during continuous stirring at a temperature of 1173 K for 20 h. The melts were quenched when the ampules were placed in running water.

Samples in the form of a dispersed $GeSe₂$ glass powder (average particle diameter of \sim 150 μ m) compacted on a quartz glass $10 \times 10 \times 2$ mm in size were situated in an IR-07 (Bruker) diffusion tube furnace heated to a certain temperature in the range (593– 753) \pm 1 K. Each sample was subjected to isothermal annealing in a nitrogen atmosphere at various temper atures for 20 min, removed from the furnace, and cooled to room temperature.

All annealed samples were studied on a Horiba LabRam HR800 spectrometer during excitation with the radiation of an He–Ne laser at a $\lambda = 632.8$ nm $(hv_{\text{exc}} = 1.96 \text{ eV})$, a radiation power of ~20 mW, similar spectral parameters, and room temperature. A laser beam was focused into a spot 6 μm in diameter. To avoid photostructural changes in the samples, the energy flux density in recording Raman spectra was

Fig. 1. DSC curve of the GeSe₂ glass recorded at a heating rate of 10 K/min. T_g is the generally accepted glass-softening temperature (viscosity $\eta \sim 10^{12.3}$ Pa s), which is the temperature of the reverse $T_{\rm w-rev}$ of the transformation of structural fragments in various high- and low-temperature polymorphic modifications (polymorphoids) of the sub stance that have no long-range order (HTPM LTPM). *Tg*(*T*) is Tammann's glass-softening temperature (viscosity $\eta \sim 10^{15} - 10^{16}$ Pa s). T_c is the crystallization temperature of a-GeSe₂.

chosen to be 6×10^{-2} kWh/cm². Scattered light was collected using reflection geometry (180°), and the bandwidth of spectrometer slit was 2 cm^{-1} .

The phase composition of the annealed powder samples was determined by X-ray diffraction (XRD) analysis performed with a D2 Phaser (Bruker) diffrac tometer using Cu K_a radiation at a wavelength $\lambda =$ 0.1548 nm.

The characteristic temperatures of the GeSe_2 glass were estimated from differential scanning calorimetry (DSC) data obtained at an error of \pm 2 K and a heating rate of 10 K/min.

RESULTS AND DISCUSSION

Figure 1 shows the DSC curve of the synthesized GeSe₂ glass that was recorded during its heating to complete crystallization at a rate of 10 K/min. The fol lowing effects are visible in this curve: two endother mic effects in the ranges 573–600 and 635–710 K with minima at 595 and 683 \pm 2 K, respectively, and two exothermic effects in the ranges 600–635 and 710– 780 K with maxima at 635 and 754 \pm 2 K, respectively.

According to [16], an endothermic effect in the thermograms of glass in heating means its softening. The onset of the first endothermic effect at $T = 573 \pm 100$ 2 K corresponds to Tammann's glass-softening tem perature $T_g(T)$ (viscosity is $\eta \sim 10^{15}-10^{16}$ Pa s). In the DSC curve, this temperature is lower than generally accepted T_g ($T = 635 \pm 2$ K, onset of the second endoeffect, viscosity $\eta \sim 10^{12.3}$ Pa s) [13, 14]. The maximum of the exothermic effect at $T = 754$ K corresponds to glass crystallization temperature T_c . Our data on T_g and T_c for GeSe₂ glass agree with the data in [17].

TECHNICAL PHYSICS Vol. 60 No. 4 2015

Fig. 2. Raman spectra of glass GeSe₂ powders annealed at various temperatures $(b-e)$ below and $(f-m)$ above T_g $(T_{\text{w-rev}})$ = 635 ± 2 K for 20 min. (*a*) Raman spectrum of an unannealed glass GeSe₂ powder. The annealing temperatures are indicated at the curves. The spectra were recorded in the frequency range $50-350$ cm⁻¹ at room temperature and were normalized by the maximum peak. Excitation was performed by the radiation of an He–Ne laser with $\lambda = 632.8$ nm ($hv_{\text{exc}} = 1.96$ eV) at a radiation power of 20 mW. Lines *A*, *B*, *C*, and *D* belong to a high temperature (HT) phase with a layered structure (2D form), and lines E and F , to a low-temperature (LT) phase (3D form) of $GeSe₂$ [12].

According to the concept of a polymer–polymor phoid structure of glass and glass-forming liquids [13–15], we can assume that, in heating at a rate of 10 K/min in the temperature range 600–635 K (Fig. 1, below $T_g(T_{w-\text{rev}})$, the HTPM polymorphoids that are unstable at these temperatures decompose and trans form into LTPM polymorphoids $(HTPM \rightarrow LTPM)$ with heat release (exothermic effect). The exoeffect is followed by endoeffect (635–710 K) with an extremum at $T = 683$ K, which is the effect of the LTPM \longrightarrow HTPM polymorphoid transformation.

Figure 2 shows the Raman spectra of the $GeSe₂$ samples annealed at temperatures below and above T_g (T_{w-rev}) = 635 ± 2K. These spectra were recorded in

Fig. 3. Decomposition of the Raman spectrum of the $GeSe₂$ glass (without annealing) into Gaussian components: (*1*) experimental and (*2*) calculated resulting spec tra. A_G mode corresponds to a weak Ge–Ge bond [19]; A_1 , to the vibrations of $\mathrm{GeSe}_{4/2}$ tetrahedra in LT α - GeSe_2 with common vortices (3D form); and A_1^C (216 cm⁻¹), to the vibrations of bridge $\text{Ge}_2 \text{Se}_{8/2}$ bitetrahedra in HT β-GeSe₂ (2D form) [8].

the frequency range $50-350$ cm⁻¹ at room temperature and were identified with the PeakFit software package by decomposition into Gaussian compo nents.

As a result of studying the Raman spectra recorded in the spectral range $150-350$ cm⁻¹, we detected the following most intense vibrational modes: 178 (A_G) , 199–200 (A_1) , and 216 (211) (A_1^C) cm⁻¹ (Figs. 3, 4). Modes at 178, 198, and 216 cm^{-1} appear in glassy GeSe₂ [18]. Mode A_G characterizes the weak Ge–Ge bond [19], and mode A_1 characterizes the vibrations of $\text{GeSe}_{4/2}$ tetrahedra in LT GeSe_2 (3D form) with common vertices (Fig. 2, peak *E*; Figs. 3, 4) [8, 12, 20, 21]. According to [5], mode A_1^C consists of the following two modes (Fig. 2, peak *A*; Fig. 3): a strong mode at 211 cm⁻¹, which belongs to the vibrations of $\text{GeSe}_{4/2}$ tetrahedron chains connected through vertices, and a weak mode at 216 cm^{-1} , which belongs to the vibrations of bridge $Ge_2Se_{8/2}$ bitetrahedra (as in HT $GeSe_2$ (2D form)). The coexistence of modes A_1 and A_1^C in glassy GeSe_2 indicates the presence of the polymorphoids of two crystalline forms of GeSe₂, namely, HT and LT forms, in the glass [8].

The Raman spectra of the annealed samples also have the following low-intensity modes: 245 (single Se₈ rings); 290 (Ge–Se–Ge bonds) [22]; 250–256 (line characteristic of a high Se_8 ring concentration); 257–260 (stretching vibrations in Se*n* chains) [23];

Fig. 4. Decomposition of the Raman spectra of the GeSe_2 glass powders annealed for 20 min at (a) 623, (b) 673, and (c) 713 K into Gaussian components: (*1*) experimental and (2) calculated resulting spectra. A_1^C mode consists of the following two modes: a strong mode at 211 cm^{-1} , which is related to the vibrations of the chains of $\text{GeSe}_{4/2}$ tetrahedra connected by common vertices, and a weak mode at 216 cm^{-1} , which is related to the vibrations of bridge Ge₂Se_{8/2} bitetrahedra in HT β-GeSe₂ (2D form) [8].

Fig. 5. Ratio of the integrated intensities of modes *A*¹ (LTPM) and A_1^C (HTPM) as a function of temperature. The data were taken from the Raman spectra of glass $GeSe₂$ powders after isothermal annealing. The ratios were normalized by the ratio obtained at $T = 293$ K. The errors are within the symbols.

and 252, 268, 297, and 307 cm^{-1} (bond vibrations in HT GeSe $₂$) [24].</sub>

The Raman spectra of the powder samples annealed at below 600 K for 20 min turn out to be sim ilar to the spectrum of the unannealed sample (Fig. 2, curve *a*), which in turn is identical to the Raman spec trum of GeSe₂ glass presented in [9, 25]. At annealing temperatures below 600 K, the ratio of the integrated intensities of modes A_1 and A_1^C (i.e., the concentration ratio of the polymorphoids (CRP) of the 3D and 2D forms) in the glass remains almost the same.

At $T_{\text{ann}} \longrightarrow T_{g} (T_{\text{w-rev}}) = 635 \pm 2 \text{ K}$, the Raman spectra have line \tilde{F} , which is attributed to the LT phase (3D form, Fig. 2, curves *c–e*) [12]. The ratio of the integrated mode intensities $I(A_1)/I(A_1^C)$ normalized by this ratio at $T = 293$ K becomes higher than unity (Fig. 5). This finding points to the fact that 3D form polymor phoids (mode A_1) in glassy GeSe₂ begin to dominate over 2D polymorphoids (mode A_1^C) to a greater extent than in the unannealed sample. The concentration of LTPM polymorphoids increases sharply due to the decomposition of HTPM polymorphoids (Fig. 2, curves *d*, *e*, Fig. 5), which are unstable at these tem peratures, and to the HTPM \longrightarrow LTPM transformation, which has an exothermic effect (Fig. 1).

The X-ray diffraction patterns of the powder sam ples subjected to isothermal annealing for 20 min at $T_{\text{ann}} \longrightarrow T_g$ ($T_{\text{w-rev}}$) = 635 \pm 2 K contain reflection lines in the angular range $2\theta = 5^{\circ} - 100^{\circ}$ against the background of an amorphous halo (Fig. 6a). These

Fig. 6. (Curves *a*–*c*) X-ray diffraction patterns of glass GeSe₂ powders annealed at various temperatures (\pm 1 K) in the range 593–753 K at a step of 10 K for 20 min in a nitro gen atmosphere. The annealing temperatures are indicated at the curves. The X-ray diffraction patterns were normal ized by the maximum peak intensity. $(*)$, (\bullet) Reflection lines of the crystal lattices of the LT (3D form) and HT (2D form) phases of Ges_{2} , respectively. At the bottom, the bar X-ray diffraction patterns of these phases ([PDF 01-071- 0117] and [PDF 00-016-0080], respectively).

lines are close to the reflection lines of the crystalline phase of orthorhombic LT α-GeSe₂ (space group *Pmnm*; lattice parameters $a = 0.6953$ nm, $b = 1.222$ nm, $c =$ 2.304 nm [2, PDF 00-016-0080]. A high concentra tion of LTPM polymorphoids in the glass and their sta bilization upon annealing below T_g ($T_{w-\text{rev}}$), $T_{\text{ann}} < T_c$, are likely to favor ordering and the appearance of coherent domains. In [26], we also detected nonequi librium LT crystalline phases stabilized in a glassy matrix in amorphous Ge–Se nanofilms.

The stability of the 3D form was also detected in amorphous GeSe₂ films annealed below T_g (T_{w-rev}) [12]. Our results correlate with the results of that work, where the crystalline LT α -GeSe₂ phase with an atomic surrounding that is similar to that of the α - $GeS₂$ phase was also detected in the samples annealed at $T_{\text{ann}} < T_g$ ($T_{\text{w-rev}}$) for 18 h.

The authors of [11] found that bulk GeSe_2 glasses are resistant to crystallization and that their crystalli zation requires thermal annealing for 60–100 h. In [9–11], bulk GeSe₂ glass was annealed at $T_{\text{ann}} > T_g$; as a result, it fully crystallized into the LT and/or HT phase of $GeSe₂$ with a monoclinic crystal lattice (2D) form).

When our samples were heated at $T_{\text{ann}} > T_g(T_{w-\text{rev}}) =$ 635 ± 2 K, glassy GeSe₂ transformed into the region of stable HTPM polymorphoids and unstable LTPM polymorphoids, as in $[9-11]$. Up to ~650 K, 3D polymorphoids still dominate over 2D polymorphoids (Fig. 2, curve f , 5), as in the unannealed sample (Fig. 2, curve *a*), but actively transform into them (LTPM \longrightarrow HTPM) with heat absorption (endoeffect with an extremum at $T = 683$ K; Fig. 1). At $T_{\text{ann}} > 650$ K, the

ratio of the integrated mode intensities $I(A_1)/I(A_1^C)$ (LTPM/HTPM CRP) becomes lower than in the unannealed sample; at $T_{\text{ann}} = 653$ K, the integrated intensities of modes A_1 and A_1^C become equal to each other (Fig. 2, curve *g*).

As T_{ann} increases further, 2D form polymorphoids (A_1^C) begin to dominate in glassy GeSe₂ (Fig. 2, peak A; Figs. 4b, 4c, 5). Lines *B*, *C*, and *D*, which were attrib uted to HT β -GeSe₂ [12], appear in the Raman spectra (Fig. 2, curves *g–m*). The X-ray diffraction patterns of the annealed GeSe₂ samples (Fig. 6, curves b, c) have the reflections of monoclinic HT $β$ -GeSe₂ (space group $P21/c$; lattice parameters $a = 0.7016$ nm, *b* = 1.6796 nm, *c* = 1.1831 nm, β = 90.65° [3, PDF 01-071-0117]). At $T_{\text{ann}} > 710 \text{ K}$, X-ray diffraction patterns have reflections from only HT β -GeSe₂ (Fig. 6, curve *c*). At $T_{\text{ann}} \longrightarrow T_c$, complete crystallization of the samples take place (Figs. 1, 2, curve *m*).

CONCLUSIONS

Based on the concept of a polymer–polymorphoid structure of glass and glass-forming liquids, we per formed a comparative structural analysis of the results of investigating GeSe₂ glass powders annealed at various temperatures below and above $T_g(T_{w-\text{rev}}) = 635 \pm$ 2 K by Raman scattering, XRD, and DSC.

It was found that the temperature dependence of the normalized ratio of the integrated mode intensities $I(A_1)/I(A_1^C)$ (HTPM/LTPM CRP) in the glass was nonmonotonic. During isothermal annealing below T_g (*T*w–rev), HTPM polymorphoids decompose and transform into LTPM polymorphoids (HTPM \rightarrow LTPM) with heat release (exothermic effect) up to the appearance of coherent $LT\text{-}GeSe_2$ domains (3D) forms). In this case, the normalized ratio is $I(A_1) / I(A_1^C) > 1.$

When the samples are annealed at temperatures above $T_g(T_{w-rev})$, the LTPM \longrightarrow HTPM transformation accompanied by heat absorption (endoeffect) occurs. As a result, HTPM polymorphoids (2D forms) are predominant in glassy $GeSe₂$ and crystallize $(I(A_1)/I(A_1^C) < 1$.

ACKNOWLEDGMENTS

We thank D.G. Kalyuzhnyi and K.G. Mikheev for their assistance in performing the experiments.

REFERENCES

1. M. M. Ibrahim, M. R. Balboul, S. A. Fayek, and M. A. Soliman, J. Non-Cryst. Solids **357**, 2035 (2011).

- 2. Lyu Tsyun'-khua, A. S. Pashinkin, and A. V. Novo selova, Zh. Neorg. Khim. **7**, 2159 (1962).
- 3. G. Dittmar and H. Schäfer, Acta Crystallogr., Sect. B **32**, 2726 (1976).
- 4. D. I. Bletskan, V. S. Gerasimenko, and M. Yu. Sichka, Kristallografiya **24**, 83 (1979).
- 5. Z. V. Popovic and H. J. Stolz, Phys. Status Solidi B **108**, 153 (1981).
- 6. Z. V. Popovic and R. Gajic, Phys. Rev. B **33**, 5878 (1986).
- 7. K. K. Inoue, O. Matsuda, and K. Murase, Solid State Commun. **79**, 905 (1991).
- 8. P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips, and J. P. Remeika, Phys. Rev. B **20**, 4140 (1979).
- 9. K. Sakai, T. Uemoto, H. Yokoyama, A. Fukuyama, K. T. Yoshino, T. Ikari, and K. Maeda, J. Non-Cryst. Solids **266**, 933 (2000).
- 10. K. Sakai, K. Maeda, H. Yokoyama, and T. Ikari, J. Non-Cryst. Solids **320**, 223 (2003).
- 11. K. Sakai, K. Yoshino, A. Fukuyama, H. Yokoyama, T. Ikari, and K. Maeda, Jpn. J. Appl. Phys. **39**, 1058 $(2000).$
- 12. K. Inoue, K. Kawamoto, and K. Murase, J. Non-Cryst. Solids **95–96**, 517 (1987).
- 13. V. S. Minaev, S. P. Timoshenkov, V. V. Kalugin, S. I. Kovalev, S. N. Novikov, and V. P. Vasiliev, J. Opto electron. Adv. Mater. **11**, 1950 (2009).
- 14. V. S. Minaev, S. P. Timoshenkov, and V. V. Kalugin, J. Optoelectron. Adv. Mater. **13**, 1393 (2011).
- 15. V. S. Minaev, S. P. Timoshenkov, V. V. Kalugin, and S. N. Novikov, Adv. Mater. Res. **39–40**, 123 (2008).
- 16. G. Tamman, *Der Glaszustand* (Voss, Leipzig, 1933).
- 17. G. Z. Vinogradova, *Glass Formation and Phase Equilib rium in Chalcogenide Systems: Binary and Ternary Sys tems*, Ed. by V. B. Lazarev (Nauka, Moscow, 1984).
- 18. K. Murase and K. Inoue, *Disordered Semiconductors*, Ed. by M. A. Kastner, G. A. Thomas, and S. R. Ovshin sky (Plenum, New York, 1987).
- 19. O. Matsuda, K. Inoue, T. Nakane, and K. Murase, J. Non-Cryst. Solids **150**, 202 (1992).
- 20. N. Kumagai, J. Shirafuji, and Y. Inuishi, J. Phys. Soc. Jpn. **42**, 1262 (1977).
- 21. K. Inoue, O. Matsuda, and K. Murase, J. Non-Cryst. Solids **150**, 197 (1992).
- 22. D. R. Goyal and A. S. Maan, J. Non-Cryst. Solids **183**, 182 (1995).
- 23. Y. Wang and K. Murase, J. Non-Cryst. Solids **326–327**, 379 (2003).
- 24. Z. V. Popovic, Z. Jaksic, Y. S. Raptis, and E. Anastas sakis, Phys. Rev. B **57**, 3418 (1998).
- 25. M. Mitkova, M. N. Kozicki, H. C. Kim, and T. L. Alford, J. Non-Cryst. Solids **352**, 1986 (2006).
- 26. E. V. Aleksandrovich, E. V. Stepanova, A. V. Vakhru shev, A. N. Aleksandrovich, and D. L. Bulatov, Tech. Phys. **58**, 1291 (2013).

Translated by K. Shakhlevich

TECHNICAL PHYSICS Vol. 60 No. 4 2015