
ISSN 1063-7834, Physics of the Solid State, 2020, Vol. 62, No. 6, pp. 976–981. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Fizika Tverdogo Tela, 2020, Vol. 62, No. 6, pp. 868–873.

LATTICE 
DYNAMICS
Computer Modeling of Phase Transformations 
and Critical Properties of the Frustrated Heisenberg Model

for a Cubic Lattice
M. K. Ramazanova, b, * and A. K. Murtazaeva, b

a Institute of Physics, Federal State Institution of Science Dagestan Scientific Center of Russian Academy of Sciences, 
Makhachkala, Russia

b Federal State Institution of Science Dagestan Scientific Center of Russian Academy of Sciences, Makhachkala, Russia
*e-mail: sheikh77@mail.ru

Received December 30, 2019; revised December 30, 2019; accepted January 10, 2020

Abstract—The investigation of the phase transformations and critical properties of the Heisenberg antiferro-
magnetic model on a cubic lattice was performed by the Monte Carlo method with account for interaction of
nearest and next-nearest neighbors. The next-nearest neighbors exchange couplings are considered ranged in
0.0 ≤ r ≤ 1.0. The phase diagram of dependence of the critical temperature on the next-nearest neighbors
exchange coupling is plotted. It is shown that a phase transformation of the second kind is observed in the
considered range of exchange values r. Using the theory of finite-dimensional scaling, the values of all main
static critical indices are computed. It is demonstrated that the class of universality of the critical behavior of
this model preserves in the range 0.0 ≥ r ≥ 0.4.
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1. INTRODUCTION
Today, the phase transformations (PT) and the

critical properties in spin systems with competing
exchange interactions are being intensively studied.
The competition between the exchange interaction
mechanisms may lead to appearance of the frustration
effects in the system. The presence of frustrations in
the system implies several fundamental changes in the
properties [1–4]. The spin systems with frustrations
predominately manifest the properties different from
the corresponding nonfrustrated systems. This differ-
ence is expressed by a rich variety of phases and PTs,
by a strong degeneration of the ground state, and by
the high susceptibility of frustrated systems to various
disturbing interactions [4, 5].

By now, a lot of interesting results have been
obtained for the two- and three-dimensional Ising
model with competing exchange interactions on vari-
ous types of lattices [6–11]. The PTs and the critical
properties of the classical Heisenberg model with
competing exchange interactions are practically not
studied for the three-dimensional case.

In this work, using the replica algorithm of the
Monte Carlo method (MC), we investigate the PTs
and the critical properties of the Heisenberg antiferro-
magnetic model on a cubic lattice with account for
interaction of nearest and next-nearest neighbors in

the range 0.0 ≥ r ≥ 1.0, where r = J2/J1 is the next-near-
est neighbors exchange coupling (J1 and J2 are the
exchange constants of nearest and next-nearest neigh-
bors, respectively).

The interest to the studied model is caused by the
fact that this model becomes frustrated when we take
into account the antiferromagnetic interactions of
next-nearest neighbors. In spin systems with frustra-
tions many physical properties are strongly dependent
on the next-nearest neighbors exchange coupling. In
addition, the Heisenberg antiferromagnetic model on
a cubic lattice with account for interaction of nearest
and next-nearest neighbors is still underinvestigated.
Thus, the investigation of this model based on the
modern method allows obtaining several answers to
the questions related with the PTs and critical proper-
ties of frustrated spin systems.

2. MODEL AND METHOD
OF INVESTIGATION

The Heisenberg antiferromagnetic model with
account for interactions of nearest and next-nearest
neighbors is described by the following Hamiltonian
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Fig. 1. Order parameter m over temperature kBT/|J1| for
values r in range 0 ≤ r ≤ 0.5.

0.5 1.0 1.5 2.0

m

0

0.2

0.4

0.6

0.8

kBT /|J1|

r = 0
r = 0.1
r = 0.2
r = 0.3
r = 0.4
r = 0.5

Fig. 2. Order parameter m over temperature kBT/|J1| for
values r in range 0.6 ≤ r ≤ 1.0.
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where Si is the three-component unit vector Si = ( ,

, ). The lattice consists of two-dimensional
square layers disposed one above the other along the
orthogonal axis. The first term in formula (1) charac-
terizes the antiferromagnetic interaction of all nearest
neighbors, and this interaction is taken identical both
inside the layers and between the layers (Jl < 0). The
second term characterizes the antiferromagnetic inter-
action of next-nearest neighbors situating in the same
layer (J2 < 0).

Today, the PTs and critical properties of frustrated
spin systems on the basis of microscopic Hamiltonians
are rather successfully studied by the MC methods
[12–18]. The MC methods allow investigating the
physical properties of spin systems of practically arbi-
trary complexity. By now, using the MC methods, the
entire classes of spin systems have been studied and the
critical indices of a wide spectrum of models have been
computed. In this study we used the replica-exchange
algorithm of the MC method [19], which is the most
powerful and efficient tool for studying frustrated spin
systems.

3. RESULTS OF MODELING

The computations were carried out for the systems
with periodic boundary conditions and with linear
dimensions L × L × L = N, L = 24–60. To settle the
system to the state of thermodynamic equilibrium, we
chop the segment with the length τ0 = 4 × 105 MC
steps/spin, which is several times larger than the length
of nonequilibrium segment. We averaged the thermo-
dynamic values along the Markov chain with the
length τ = 500τ0 MC steps/spin.

x
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To observe the temperature dependences of the
heat capacity C and susceptibility χ, we used the
expressions [20]

(2)

(3)

where K = |J1|/kBT, N is the number of particles, TN is
the critical temperature, U is the internal energy, and
m is the order parameter (U and m are normalized
quantities).

We calculated the order parameter m of the system
using the formula

(4)

(5)

(6)

(7)
where m1, m2, m3, and m4 are the order parameters in
the sublattices and z is the number of layer of the lat-
tice.

In Figs. 1 and 2 we present the temperature depen-
dences of the order parameter at L = 30 for different
values of r (from now on the statistical error does not
exceed the size of the symbols used to plot the depen-
dences). Note that, as the value r increases in the inter-
val 0.0 ≤ r ≤ 0.5, the drop in the order parameter shifts
towards lower temperatures. In the range 0.6 ≤ r ≤ 1.0
we observe the opposite pattern. As r increases from
0.6 to 1.0, the drop of the order parameter shifts
towards higher temperatures.
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Fig. 3. Susceptibility of χ over temperature kBT/|J1| for val-
ues r in range 0 ≤ r ≤ 0.5.
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Fig. 4. Susceptibility of χ over temperature kBT/|J1| for val-
ues r in range 0.6 ≤ r ≤ 1.0.
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Fig. 5. Binder cumulant UL over temperature kBT/|J1| for
r = 0.7 and different L.
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Figures 3 and 4 show the temperature dependences
of the susceptibility obtained at L = 30 for different
values of r. Note that, as the value r increases in the
range 0.0 ≤ r ≤ 0.5, the maximums shift towards lower
temperatures, and, simultaneously, we see a growth in
the absolute values of the susceptibility maximums.
The increase in the absolute values of maximums
occurs due to competition between nearest and next-
nearest neighbors. In the case 0.6 ≤ r ≤ 1.0 we observe
an opposite pattern. With an increase in r from 0.6 to
1.0, a decrease in the absolute values of susceptibility
maximums is observed and the maximums shift
towards higher temperatures.

The increase in the interaction of next-nearest
neighbors in this interval leads to an increase in the
interaction energy by its absolute value, which
strengthens the stiffness of the system and the tem-
perature of the phase transformation therefore grows.

To determine the critical temperature TN, we used
the method of the fourth-order Binder cumulants UL
[21]:

(8)

According to the theory of finite-dimensional scal-
ing, the point of intersection of all curves UL(T) is a
critical point [21]. Expression (8) allows determining
the critical temperature with a high degree of accuracy.

In Fig. 5 we plot the typical dependences of UL on
temperature at r = 0.7 for different values of L. The
figure demonstrates the degree of accuracy of critical
temperature determination. We observe a clearly pro-
nounced point of intersection (TN = 0.963; from now
on, the temperature is given in units |J1|/kB) in the crit-
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ical domain. Similarly, we determined the critical
temperatures for the remaining values of r.

In Fig. 6 we draw the phase diagram of the critical
temperature dependence on the next-nearest neigh-
bors exchange coupling.

In the diagram we see that three different phases
intersect near the value r = 0.5: I antiferromagnetic
phase, II paramagnetic phase, and III superantiferro-
magnetic phase. It was shown in work [22] that the
PTs of the second kind are observed for all considered
values of r.

To compute the static critical indices of heat capac-
ity α, order parameter β, susceptibility γ, and correla-
tion radius ν, we applied the relations of the theory of
finite-dimensional scaling. From the theory of finite-
dimensional scaling it follows that, in the system with
dimensions L × L × L, the following expressions are
SICS OF THE SOLID STATE  Vol. 62  No. 6  2020
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Fig. 6. Phase diagram of dependence of critical tempera-
ture on next-nearest neighbors exchange coupling.

0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

0.4

r

1.4

T
N

I

II

III

Fig. 7. Parameter Vi over linear dimensions of system L at
T = TN for r = 0.7.
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Fig. 8. Order parameter m over linear dimensions of system
L at T = TN for r = 0.7.
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Fig. 9. Susceptibility of χ over linear dimensions of system
L at T = TN for r = 0.7.
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satisfied at kBT/|J1| = kBTN/|J1| and relatively large L
[23–25]

(9)

(10)

(11)

where  is the constant and in place of Vi we may use

(12)

We used these expressions to determine the values
of critical indices β, γ, and ν.

To approximate the temperature dependence of the
heat capacity on L, the following formula is com-
monly used in practice [6]

(13)
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PHYSICS OF THE SOLID STATE  Vol. 62  No. 6  2020
where A1 and A2 are some coefficients.

In Fig. 7 in the double logarithmic plot we present
the typical dependences of parameters Vi at i = 1, 2, 3
on linear dimensions of lattice L for r = 0.7. We see in
the figure that all points lie on the straight line in the
graphs within the error. The dependences in the figure
plotted by the least-squares method are parallel to
each other. The angle of inclination of the straight line
determines the value 1/ν. The value ν calculated in
this manner was used to determine the critical indices
of heat capacity α, order parameter β, and susceptibil-
ity γ.

In Figs. 8 and 9 in the double logarithmic plot we
draw the typical dependences of the magnetic order
parameter m and of the susceptibility χ on the linear
dimensions of lattice L for r = 0.7. All points lie on the
straight lines within the error. The inclination angles
of these straight lines determine the values β/ν and
γ/ν. Using this scheme, we determined the value for
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Table 1. Values of critical parameters for antiferromagnetic Heisenberg model on a cubic lattice

r kBTN|J1| ν α β γ η α + 2β + γ = 2

Nonfrustrated 
Heisenberg model [22]

1.443(1) 0.7112(5) −0.01336(15) 0.3689(3) 1.3960(9) 0.0375(5) 2

0.0 1.443(1) 0.712(5) −0.134(5) 0.366(5) 1.393(5) 0.036(5) 2
0.1 0.307(1) 0.710(5) −0.132(5) 0.364(5) 1.390(5) 0.032(5) 1.98
0.2 1.160(1) 0.711(5) −0.133(5) 0.362(5) 0.392(5) 1.034(5) 1.98
0.3 1.000(1) 0.713(5) −0.136(5) 0.365(5) 1.391(5) 0.033(5) 1.99
0.4 0.811(1) 0.712(5) −0.133(5) 0.363(5) 1.393(5) 0.035(5) 1.99
0.6 0.802(1) 0.650(5) 0.161(5) 0.295()5 1.259(5) 0.06(2) 2.01
0.7 0.963(1) 0.648(5) 0.163(5) 0.293(5) 1.256(5) 0.05(2) 2
0.8 1.096(1) 1.647(5) 0.162(5) 0.291(5) 1.258(5) 0.05(2) 2
0.9 1.219(1) 0.651(5) 0.164(5) 0.292(5) 1.257(5) 0.07(2) 2.01
1.0 1.332(1) 0.649(5) 0.165(5) 0.295(5) 1.259(5) 0.06(2) 2.01
the heat capacity α/ν. With the data on ν we computed
the static critical indices α, β, and γ.

This procedure was applied to compute the critical
indices for all considered values of r. All values of static
critical indices obtained in this manner are given in
Table 1. The procedure used by us to determine the
Fisher index η is described in more detail in work [26].
The data that we obtained for the Fisher index η are
also provided in the table.

Note that for the value r = 0.5 we did not succeed
in computing the critical indices with an admissible
error. We suggest that it is related with the fact that in
this point three different phases coexist.

It is seen in Table 1 that the critical temperature
kBTN/|J1| decreases as the next-nearest neighbors
exchange coupling increases until the value r = 0.6. As
r continues to increase, the critical temperature begins
to increase. All values of critical indices which we
computed in the range 0.0 ≤ r ≤ 0.4 coincide within the
error with the values of critical indices in the three-
dimensional nonfrustrated Heisenberg model [27].
This indicates that this model in the range 0.0 ≤ r ≤ 0.4
belongs to the same class of universality of the critical
behavior as the nonfrustrated Heisenberg model. The
values of critical indices computed by us in the range
0.6 ≤ r ≤ 1.0 are significantly different from the data
obtained in the range 0.0 ≤ r ≤ 0.4. We may suggest that
the account for interaction of next-nearest neighbors
inside the layers of the lattice leads to the change in the
class of universality of the critical behavior for the
antiferromagnetic Heisenberg model on a cubic
lattice.

4. CONCLUSIONS
We studied the phase transformations and critical

behavior of the antiferromagnetic Heisenberg model
on a cubic lattice with account for interaction of near-
est and next-nearest neighbors inside the layers of the
PHY
lattice using the high-efficient replica algorithm of the
Monte Carlo method. We plotted the phase diagram
of dependence of the critical temperature on the next-
nearest neighbors exchange coupling. We determined
the values of critical temperatures and computed the
values of all main static critical indices in the range
0.0 ≤ r ≤ 1.0. We established the laws of variation in the
critical parameters in the considered range of r. We
revealed that in the range 0.0 ≤ r ≤ 0.4 the system
demonstrates the universal critical behavior. We
showed that the considered model exhibits another
critical behavior in the range 0.6 ≤ r ≤ 1.0.
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