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Abstract—The phase transitions and the thermodynamic properties of the two-dimensional ferromagnetic
Potts model with the number of spin states q = 4 on a triangular lattice are studied on the base of the Wang–
Landau algorithm of the Monte Carlo method. The phase transition characters are analyzed using the
method of the four-order Binder cumulants and the histogram analysis of the data. It is found that a first-
order phase transition is observed in the model under study.
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1. INTRODUCTION
Studying phase transitions (PT), critical, mag-

netic, and thermodynamic properties of magnets,
which are described by the two-dimensional Izing and
Potts lattice models, is of a great scientific interest,
since it opens wide prospects for practical application
[1–3]. Low-dimensional lattice models describe a
wide class of real physical systems: layered magnets,
liquid helium films, superconducting films, adsorbed
films, etc. [1, 4, 5].

At the present time, the two-dimensional Izing
model has been studied quite well and almost all its
properties are known [6–10]. On the other hand, there
are only a few facts established reliably for the two-
dimensional Potts model with various numbers of the
spin states q. Most avail the two-dimensional Potts
model with various numbers of the spin states q able
data were obtained for the two-dimensional Potts
model with various numbers of the spin states q = 2
and q = 3 [11–14]. The two-dimensional Potts model
with the number of spin states q = 4 is still scantily
known. This model is interesting, since the value q = 4
is the boundary value of the range 2 ≤ q ≤ 4, where a
second-order phase transition takes place, and the
region of values q > 4, in which the phase transition
occurs as a first-order PT [15]. According to [11–13],
in the Potts model with the number of spin states q =
2, 3, and 4, a second-order PT is observed. However,
at q = 4, this model demonstrated the peculiarities of
the thermodynamic behavior. In this connection, in
this work, we attempt to study PT and the thermody-
namic properties of the two-dimensional ferromag-

netic Potts model with the number of spin states q = 4
on a triangular lattice using the Monte Carlo (MC)
method.

The PT character and the regularities of changing
the thermodynamic behavior of this model cannot be
unambiguously determined on the base of the data
available now, and these problems remain open up to
now. The study of the two-dimensional Potts model
with the number of spin states q = 4 using modern
methods and ideas will enable us to answer a number
of questions related to PT and the thermodynamic
properties of low-dimensional lattice systems.

2. MODEL AND METHOD OF STUDIES

The Hamiltonian of the Potts model with the num-
ber of spin states q = 4 can be represented as

(1)

where J is the parameter of exchange ferromagnetic
interactions for the nearest neighbors, θi, j is the angle
between the interacting spins Si – Sj.

At the present time, such systems based on micro-
scopic Hamiltonians are successfully studied using the
MC method [6, 7, 16, 17]. Recently many new ver-
sions of the algorithms of the MC method have been
developed. Among them, the Wang–Landau algo-
rithm [14, 18, 19] is one of most efficient for studying
similar system, in particular, at low temperatures.
Thus, we use this algorithm in this work.
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Fig. 1. Temperature dependences of specific heat C/kB.
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We introduce additions in the standard Wang–
Landau algorithm, which enabled us to reveal the
magnetic structure of the ground state of the system.
This algorithm is a realization of the entropy simulat-
ing method and enables one to calculate the density-
of-states function of the system. The Wang–Landau
algorithm is based on the fact that we obtain a uniform
energy distribution, executing a random walk in the
energy space with the probabilities which are inversely
proportional to the density of states g(E). Selecting the
transition probabilities such that the visits of all energy
states would become uniform, we can obtain initially
unknown density of states g(E), knowing which we can
calculate the values of required thermodynamic
parameters at any temperature. Because density of
states g(E) increases very fast with the sizes of the sys-
tem under study, quantity lng(E) is used for conve-
nience of storing and processing large numbers.

We used the Wang–Landau algorithm in the fol-
lowing form.

First, an arbitrary initial spin configuration is
given. The start values of the density of states is g(E) =
1, the energy distribution histogram H(E) = 0, and the
start modification factor is f = f0 = e1 ≈ 2.71828. We
repeatedly execute steps in the phase space, until a rel-
atively f lat histogram H(E) will be obtained (i.e., until
all possible energy states of the system will be visited
approximately the same number of times). In this
case, the transition probability from the state with
energy E1 to the state with energy E2 is determined by
formula p = g(E1)/g(E2). If the transition to the state
with energy E2 took place, then g(E2) → f × g(E2),
H(E2) → H(E2) + 1; in other cases, g(E1) → f × g(E1).
If the histogram became “flat,” we performed the
nulling of the histogram (H(E) → 0), decreased the
modification factor f →  and continued once again
as long as f ≥ fmin. In our case, fmin = 1.0000000001.
The Wang–Landau algorithm is described in more
detail in [18, 19]. Thus, determining the density of
states of the system, we can calculate the thermody-
namic parameters at any temperature. In particular,
internal energy U, free energy F, specific heat C and
entropy S can be calculated using the following rela-
tionships:
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where K = |J|/kBT, N is the number of particles, T is the
temperature (here and further temperature is given in
the |J|/kB units, and U is the internal energy (U is the
normalized quantity).

We analyzed the PT character using the fourth-
order Binder cumulant method and the histogram
analysis of the data of the MK method [20, 21].

The calculations were performed for the systems
with periodic boundary conditions and linear sizes
L × L = N, L = 12–120, where L is measured in the
unit cell sizes.

3. RESULTS AND DISCUSSIONS
Figure 1 shows the characteristic temperature

dependences of the specific heat C for the systems with
linear sizes L = 60, 72, 96, and 120 (here and further
the statistic errors are not larger than the sizes of the
symbols used for constructing the dependences). Note
that these dependences have pronounced maxima for
all the systems near the critical temperature; the max-
ima increase with the number of spins in a system and
they are at the same temperature within the limits of
the error, even for the system with the least L. This fact
shows, first, the high efficiency of using the method of
adding the periodic boundary conditions and, second,
that many parameters under study achieve saturation
in N.

Figure 2 shows the temperature dependence of
entropy S for the system with L = 120. It is seen that
the entropy of the system tends to the value ln 4 pre-
dicted theoretically as temperature increases. At low
temperatures close to the absolute zero of tempera-
ture, the entropy of the system tends to a zero. Similar
dependences are observed for all values of L under
consideration. This behavior of the entropy enables us
to speak that there is no degeneracy of the ground state
in this model.
9
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Fig. 2. Temperature dependence of entropy S.
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Fig. 3. Temperature dependences of the Binder magnetic
cumulant UL.
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Fig. 4. Temperature dependences of the Binder energy
cumulant VL.
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The most efficient method of analyzing the PT
character, the behavior of thermal characteristics near
the critical point, and the determination of the critical
temperature Tc is the method of the fourth-order
Binder cumulants [21]:

(6)

(7)

where VL is the energy cumulant and UL is the mag-
netic cumulant.

Equations (6) and (7) enable one to determine the
critical temperature Tc to a high accuracy for the first-
order and second-order PTs, respectively. It should be
noted that the application of the Binder cumulants
allows one also to well test the PT type in a system. It
is known that the first order PTs are characterized by
that VL tends to some nontrivial value V* according to
the relationship

(8)

at L → ∞ and T = Tc(L), where V* differs from 2/3
and the minimum value ULmin(T = Tmin) diverges:
ULmin(T = Tmin) → –∞ at L → ∞.

In the case of a second-order PT, the curves of the
temperature dependence of the Binder cumulants UL
have the pronounced intersection point [21].

Figure 3 shows the characteristic dependence of UL
on temperature for various values of L. It is seen that
there is no clear intersection point in the critical
region, which favors the existence of a first-order PT
in the system.
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Figure 4 depicts the temperature dependence of the
energy cumulant VL for various values of L. As is seen,
the value of VL tends to 2/3, and V* = 2/3, which is
characteristic of a second-order phase transition. This
value was calculated using Eq. (8). It is seen from
Fig. 4 that V* = 0.6660(1) in the model under study.

Thus, the more detailed analysis of the PT order
was performed using the histogram analysis of the MC
method data. This method enables us to reliably
determine the PT order. The procedure of determin-
ing the PT order by this method is described in detail
in [22, 23].

The results of this work obtained on the base of the
histogram analysis show that PT in this model is a
first-order transition. This result is demonstrated in
Fig. 5, where histograms of the energy distribution are
SICS OF THE SOLID STATE  Vol. 61  No. 11  2019
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Fig. 5. Energy distribution histograms for L = 60, 72,
and 96.
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Fig. 6. Energy distribution histograms for L = 120 at vari-
ous temperatures.
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shown for the systems with linear sizes L = 60, 72, and
L = 96. The plots were built near the critical tempera-
ture. It is seen from Fig. 5 that the dependences of
probability W on energy E for all the systems have two
maxima, which testify in favor of a first-order PT. The
existence of the double peak in the energy distribution
histograms is a sufficient condition of a first-order PT.
Note that the double peaks are observed in this model
only for the systems with big linear sizes (L > 60).
In addition, in this model, the double peaks are
observed near the critical region only in a very narrow
temperature range. This fact is shown in Fig. 6, where
the energy distribution histograms are shown for the
system with linear size L = 120. These plots were built
at various temperatures close to the critical tempera-
ture. As is seen from Fig. 6, the double peaks are
observed in a narrow temperature range 0.4438 K <
PHYSICS OF THE SOLID STATE  Vol. 61  No. 11  201
T < 0.4450 K. At temperatures lower and higher this
range, one peak disappears, with hampers the deter-
mination of the PT type in such systems. Such a
behavior is characteristic of the systems, in which
first-order phase transition close to second-order
phase transitions occur.

4. CONCLUSIONS

The phase transitions and the thermodynamic
properties of the two-dimensional ferromagnetic Potts
model with the number of spin states q = 4 on a trian-
gular lattice has been studied using the Wang–Landau
algorithm of the Monte Carlo method. The analysis of
the character of the phase transitions was performed
based on the histogram method and the Binder cumu-
lant method. It is shown that the system demonstrates
a first-order phase transition.
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