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Abstract—The Monte Carlo replica technique is used to study phase transitions and the thermodynamic and
critical properties of the three-dimensional Heisenberg antiferromagnetic model on the body-centered cubic
lattice with the inclusion of the interaction of the nearest and the next-nearest neighbors. The studies are per-
formed for the proportions of the values of the exchange interactions of the nearest and the next-nearest
neighbors in the range of values of k [0.0, 0.6]. The phase transition character is analyzed based on the histo-
gram method. The overall set of static critical indices is calculated in terms of the theory of the finite-dimen-
sional scaling. It is shown that the class of the critical behavior universality of this model is conserved in the
above range of values of k.
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1. INTRODUCTION
Studying the phase transitions (PT), and the ther-

modynamic and critical properties of spin systems
with frustrations is a central problem of the physics of
condensed media. This is related to the fact that frus-
trated spin systems have the behavior different from
the behavior of corresponding nonfrustrated systems.
The cause of such behavior is in the strong degeneracy
in a spin subsystem [1–4].

The frustration effects are often studied using
models with competing exchange interactions of the
nearest and the next-nearest neighbors. The existence
of competing exchange interactions in magnetic mate-
rials can lead to a wide variety of different magnetic
ordered states and PTs between them. In addition, the
PT features at various values of the proportion of the
exchange interactions between the nearest and the
next-nearest neighbors are only known in general
terms.

The existence of frustrations is known can lead to a
change in the PT character and influence the forma-
tion of the universality classes of the critical behavior
of spin systems. In addition, the inclusion of the anti-
ferromagnetic interactions of the next-nearest neigh-
bors leads to the appearance of various phases and
anomalies of the thermodynamic and critical proper-
ties [4–9].

In this work, we use the Monte Carlo (MC)
method to study the phase transitions, and the ther-

modynamic and critical properties of the Heisenberg
antiferromagnetic model on a body-centered cubic
lattice with the inclusion of the interaction of the near-
est and the next-nearest neighbors.

The antiferromagnetic Heisenberg model on the
body-centered cubic (bcc) lattice is interesting, since
the inclusion of the interactions of the next-nearest
neighbors can lead to the appearance of frustrations,
which hampers the solution of the problem. Up to
now, when studying frustrated systems, the main
attention was focused on spin systems on square, tri-
angular, and hexagonal lattices [10–15]. The phase
transitions and the critical properties of the frustrated
Heisenberg model on a body-centered cubic lattice are
only scantly known. In [16], the PTs in this model
were studied taking into account the interactions of
the nearest and the next-nearest neighbors. The
results show that, in this model, the first order PT is
observed at the ratio of the exchange interactions of
the next-nearest neighbors k = 1.

The available data do not enable the unambiguous
determination of the PT character and the regularities
of changing the critical character of the frustrated
Heisenberg model on a bcc lattice at various values of
k, and these questions are still open questions.

The study of this model using modern methods and
ideas will make it possible to obtain answers a number
of questions related to the phase transitions, and the
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Fig. 1. Heat capacity C/kB vs. temperature kBT/|J1| for L =
48 at various k.
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Fig. 2. Susceptibility χ vs. temperature kBT/|J1| for L = 48
at various k.
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thermodynamic and critical properties of frustrated
spin systems.

2. MODEL AND THE METHOD OF STUDIES
The antiferromagnetic Heisenberg model on a

body-centered cubic lattice with allowance for the
interactions of the nearest and next-nearest neighbors
is described by Hamiltonian

(1)

where |Si| is the modulus of three-component unit vec-

tor Si = ( , , ). The first term in Eq. (1) takes
into account the exchange interaction of the nearest
neighbors (J1 < 0), and the second term, the exchange
interaction of the next-nearest neighbors (J2 < 0). In
our calculation we take J1 = 1 and vary the value of J2;
k = J2/J1 is the value of the interaction of the next-
nearest neighbors. All the parameters are given in the
dimensionless form.

The calculations were performed for the systems
with periodic boundary conditions and linear sizes
2(L × L × L) = N, L = 24–90, where L is measured in
the unit cell sizes. The value of the interaction of the
next-nearest neighbors was varied within the range k
[0.0, 0.6] with a step Δk = 0.1. To bring the system to
the thermodynamic equilibrium state, we cut out a
nonequilibrium segment with a length of τ0 = 4 ×
105 MC steps per spin, which is several times larger
than the length of the nonequilibrium segment. The
averaging of the thermodynamic parameters was car-
ried out along the Markov chain with a length to τ =
500τ0 MC step per spin.

The studies of the phase transitions, and the ther-
modynamic and critical properties of the frustrated
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spin systems by the traditional theoretical and experi-
mental methods come up against a number of formi-
dable problems. This is related to the fact that these
models are characterized by the problem of numerous
valleys of local energy minima. Such systems can be
rigorously and successively studied based on micro-
scopic Hamiltonians using the MC methods [10, 12,
14, 16–24], but common MC methods poorly cope
with the solution of these problems. Recently, in this
connection, many new versions of MC method algo-
rithms that enable one to overcome these problems.
Among the most powerful and efficient MC algo-
rithms of the phase transitions and the critical phe-
nomena in the frustrated systems are replica Monte
Carlo algorithms [23, 24]. Thus, in this study, we used
a high-efficient replica exchange Monte Carlo algo-
rithm.

3. RESULTS OF SIMULATION
To observe the temperature dependence of heat

capacity C and susceptibility χ, we used the expres-
sions [25, 26]:

(2)

(3)

where K = |J|/kBT, N is the number of particles, TN is
the critical temperature (here and below the tempera-
ture is given in units of |J1|/kB, U is the internal energy,
and m is the order parameter (U and m are normalized
values).

Figures 1 and 2 show the characteristic depen-
dences of the heat capacity and the susceptibility on
temperature for the system with linear sizes L = 48 at
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Fig. 3. Binder commulant UL vs. temperature kBT/|J1| for
k = 0.6 at various L.
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Fig. 4. Histogram of the energy distribution for k = 0.2 at
L = 60 and L = 90.
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various k (here and in subsequent figures, the statistic
error is not larger than the sizes of symbols using for
the construction of the dependences).

It is seen from Figs. 1 and 2 that the temperature
dependences of heat capacity C and susceptibility χ at
all values of k near the critical temperature have pro-
nounced maxima, which shift to lower temperatures as
k increases. In this case, an increase in the values of k
leads to an increase in the absolute values of the max-
ima of the susceptibility, which is due to an enhance in
fluctuations because of an increase in the competition
of the nearest and next-nearest neighbors.

To determine the critical temperature TN the
fourth-order Binder cumulants is most effective [27]:

(4)

(5)

where VL is the energy cumulant and UL is the mag-
netic cumulant.

Equation (5) enables one to determine critical tem-
perature TN at a high accuracy and to test well the PT
type in the system.

Figure 3 shows characteristic temperature depen-
dences UL at k = 0.6 for various values of L. It is seen
that the clear intersection point (TN = 0.871(1)) is
observed in the critical region. By analogy, the critical
temperatures were determined also for other values of k.

To analyze the PT order, we also used the histo-
gram analysis of the MC method data [28, 29]. This
method allows us to reliably determine the PT order.
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The procedure of determining a PT order by this
method is described in detail I [30, 31].

Our studies show that PTs for all values k are the
second-order transitions. This fact is demonstrated in
Figs. 4 and 5, which show the histograms of the distri-
bution of energy for the systems with linear sizes L =
60 and L = 90 at k = 0.2 and k = 0.6. The plots were
built near the critical temperature. Figures 4 and 5
show that the dependences of probability P on energy
U for k = 0.2 and k = 0.6 have a well-pronounced max-
imum. The existence of one maximum in the histo-
gram of energy distribution is a sufficient condition of
the second-order phase transition. Similar result was
obtained also for other values of k.

To calculate the static critical indices of heat
capacity α, susceptibility γ, order parameter β, cor-
relation radius ν, and the Fisher index η, we used of
the relationships of the finite-dimensional scaling
(FDS) theory [32].

From the FDS theory, it follows that, in the system
with sizes L × L × L at T = TN and quite large L, the
following relationships are fulfilled [32]:

(6)

(7)

(8)

where  is a constant and Vn can be

(9)

These expressions can be used to determine β, γ, and ν.
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Fig. 5. Histogram of the energy distribution for k = 0.6 at
L = 60 and L = 90.
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Fig. 6. Parameter Vn vs. linear sizes of the system L at T =
TN for k = 0.2.
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Fig. 7. Order parameter m vs. linear sizes of the system L at
T = TN for k = 0.2.
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TN for k = 0.2.

�

1024

2048

4096

32 64
L

k = 0.2

512

16
The temperature dependence of the heat capacity
on L, as a rule, the following expression is used

(10)

where A1 and A2 are some coefficients.

Figure 6 shows in a log–log scale shows the charac-
teristic dependences of parameters Vn at n = 1, 2, 3 on
linear lattice sizes L for k = 0.2. As is seen, all the
points on the plots well lie on straight lines within the
error. The dependence built using the least square
technique are parallel to each other. The slope angles
of the straight lines determine the value of 1/ν. Thus-
calculated values of ν were used to determine the crit-
ical indices of heat capacity α, susceptibility γ, and
order parameter β.

α ν= − /
max 1 2( ) ,C L A A L
PHY
Figures 7 and 8 show in a log–log scale shows the
characteristic dependences of magnetic order param-
eter m and susceptibility χ on linear lattice size L for
k = 0.2. All the points well lie on straight lines within
the error. The slopes of these straight lines determine
β/ν and γ/ν. This scheme was used also to determine
the values of heat capacity α/ν. Using the data on ν,
we calculated static critical indices α, β, and γ.

This procedure was used to calculate the critical
indices for all values of k under consideration. The
procedure of finding the Fisher index η was described
in detail in [33].

All the values of static critical indices obtained in
this work are given in Table 1. As is seen from Table 1,
almost all values of the critical indices calculated in
the range of k [0.0, 0.6] coincide to each other within
SICS OF THE SOLID STATE  Vol. 61  No. 6  2019
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Table 1. Critical indices for three-dimensional antiferromagnetic Heisenberg model on a body-centered cubic lattice

k TN ν α β γ η α + 2β + γ = 2

0.0 2.056(1) 0.70(1) −0.13(1) 0.37(1) 1.39(1) 0.02(2) 2.0
0.1 1.873 0.70 −0.12 0.36 1.38 0.03 1.98
0.2 1.687 0.70 −0.13 0.37 1.39 0.02 2.0
0.3 1.494 0.70 −0.12 0.36 1.39 0.02 1.99
0.4 1.301 0.70 −0.12 0.36 1.38 0.03 1.98
0.5 1.094 0.70 −0.12 0.37 1.39 0.02 2.01
0.6 0.871 0.71 −0.13 0.37 1.38 0.03 1.99

Nonfrustrated 
Heisenberg model [34]

1.443 0.7112(5) −0.117(2) 0.3689(3) 0.3960(9) 0.0375(5) 2.01
the error. This fact shows that the system demonstrates
the universal critical behavior in this range.

Note that the obtained critical indices in the range
of k [0.0, 0.6] coincide, within the error, with the cor-
responding values of the critical indices for the non-
frustrated three-dimensional Heisenberg model [34].
This result shows that, in the above range of k, the
inclusion of the interactions of next-nearest neighbors
does not lead to a change in the universality class of the
critical behavior, and this model belong to the same
universality class of the critical behavior as the non-
frustrated three-dimensional Heisenberg model.

4. CONCLUSIONS
The study of the phase transitions, thermody-

namic, and critical properties of the three-dimen-
sional antiferromagnetic Ising model on a body-cen-
tered cubic lattice with the allowance for the interac-
tions of the nearest and next-nearest neighbors was
performed using a high-efficient replica Monte Carlo
algorithm. It is shown that, in this model, the second-
order phase transition is observed in the range of the
interaction of the next-nearest neighbors k [0.0, 0.6].
We calculated all the main static critical indices in this
range. It is established that the system demonstrates
the universal critical behavior in the noted range of k.
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