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Abstract—Within the density functional method, a simple method for determining the dependence of the
work function of electrons and specific surface energy of the metal on the relative density of internal vacancies

 is proposed. Preserving the style of the stabilized jellium model, the preliminarily calculated volume shift
of the conductivity zone bottom ε(0) ∝  in a specific homogeneous metal is introduced into a one-dimen-
sional functional as the zero-point energy. Using the quantity  as a small parameter, linear corrections to
the abovementioned quantities are found. The expansion coefficients are expressed in terms of characteristics
of a defectless metal. Calculations for Na and Al are carried out by the Kohn–Sham method. Temperature
dependences of Al characteristics have been constructed in the thermodynamic limit.
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1. INTRODUCTION
Characteristics of a metal are sensitive to the pres-

ence of defects [1–3]. The effect of thermal vacancies
on the specific resistance ρ of a metal is determined
experimentally by the residual resistance. Assuming
that contributions to the electron scattering by differ-
ent low-density defects are additive (the Matthiessen
rule) [1] and based on the thermodynamic definition
of the concentration of vacancies, the dependence of
electrical resistance on the density of vacancies can be
represented in the form

(1)

where ρ0 is the resistance at room temperature. Using
the known values ρ0 = 4.70 × 10–8 and 2.82 × 10–8 Ω m
[2], we have intervals of experimental values of the
coefficient αρ = 40–44 and 39–100 for Na and Al,
respectively. Dependence (1), along with the tempera-
ture dependence of the resistance, is most interesting
near the melting point, where the concept of a vacancy
is still quite definite for the crystalline state and
vacancy concentrations are maximum. After melting,
one should probably speak of “quasi-vacancies” the
concentration of which increases further with an
increase in temperature [4].

For electrons, a vacancy in a metal is a potential
hill; for positrons, a well. Phases of electron wave scat-
tering by a monovacancy were calculated many times
in different approximations. In particular, using the
Kohn–Sham method, we also found phases of elec-
tron scattering by a single vacancy [5]. This allowed us

to estimate the vacancy contribution to the electrical
resistance: αρ = 39 and 29 for Na and Al, respectively.

The presence of a system of vacancies noncor-
related and ordered in a superlattice in a homogeneous
metal (without regard to the surface) causes shifts of
the conductivity zone bottom ε(0). The calculated scat-
tering phases also allow us to determine the shifts for
electrons [5] and positrons [6]. The quantity ε(0) can be
characterized as a reference point for the electron
energy in a defect metal. The approach proposed in [7,
8] additionally takes into account the solution of a
variational problem for an inhomogeneous metal with
a homogeneous bulk the density of which is lower due
to the presence of vacancies. Based on intuitive con-
siderations, the effective work function Weff of metal
electrons was represented as the sum

(2)
where W is a characteristic calculated by the density
functional method and consisting of the bulk compo-
nent and surface dipole barrier, and

Dependences of form (1) for the electron work
function, metal surface energy, and vacancy formation
energy by measurements of the temperature depen-
dence for these quantities yet were not present. The
dependence just on the quantity  yields information
about the interaction of vacancies and is of interest for
nonequilibrium situations. In early experiments with
metal systems [9], self-arbitrary ordering of vacancies

v
c

v
c

v
c

ρρ = ρ + α
v v

0( ) (1 ),c c

= + δ
v

bulk
eff ,W W W

δ = −ε
v

bulk (0).W

v
c

84



MORE ON THE EFFECT OF VACANCIES ON METAL CHARACTERISTICS 85

Table 1. Values calculated by the Kohn–Sham method for a defectless metal (components in formulas (29)–(32)) and
vacancy coefficients αW and ασ

Metal , a0 W0, eV , eV , eV αW σ0, erg/cm2 , erg/cm2 ασ

Na 3.99 2.93 0.63 4.10 −1.61 171 169 −3.77
Al 2.07 4.30 0.56 13.3 −3.22 926 592 −9.77
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was observed, which clearly points to the manifesta-
tion of correlations between them. For example, for a
simple cubic superlattice and concentrations with  ≥
10–3, each of the vacancies undergoes a significant
action from the field of tails of Friedel oscillations of
the electron density from nearest neighbor vacancies
[5]. In polyhedral clusters with N ≥ 100 atoms, diffu-
sion of vacancies along ridges is observed during sur-
face melting (premelting) [10, 11]; with an increase in
temperature, diffusion of surface vacancies into the
bulk is also possible [12]. The presence of even one
internal vacancy at N = 100 leads to an anomalously
large value  = 10–2, and the cluster itself becomes a
vacancy elementary cell.

This work is aimed at adapting the popular stabi-
lized jellium model [13, 14] of a defectless metal to a
metal containing vacancies, as well as at justifying and
constructing a consistent procedure of finding the
vacancy dependence of form (1) for the electron work
function and surface energy with the preservation of
the style inherent to the stabilized jellium model.

2. DEFECTLESS METAL
In the stabilized jellium (SJ) model, the energy of a

large spherical defectless metal cluster containing N
atoms and situated in vacuum is written in the form of
the inhomogeneous electron density functional n(r):

(3)

where e is the unit positive charge and φ(x) is the elec-
trostatic potential in the usual jellium (J) model [15];
the distribution of negative n(r) and positive

(4)
charges is one-dimensional; θ(x) = {1, x ≤ 0; 0, x > 0}
is the unit step Heaviside function; and

(5)

is the electron density in the bulk. Here, rs is the aver-
age distance between electrons of a homogeneous
(defectless) metal and the cluster radius in the liquid
drop model

(6)
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where r0 = Z1/3rs is the Wigner–Seitz cell radius and Z
is the valence of the metal.

In expression (3), the total energy functional EN[n]
is associated with the energy ε = εJ + εM +  per one
electron; the universal functional GN[n], with the
energy of the usual jellium εJ equal to the sum of the
kinetic (εt) and exchange–correlation (εxc) energies
[16];  = 3Ze2/5r0 is the self-repulsion energy of the
positively charged background in each Wigner–Seitz
cell

(7)
is the cell volume averaged difference between the ion
lattice pseudopotential and electrostatic potential of
the positively charged background;

(8)
is the average Madelung energy or the electrostatic
energy of a system of point ions immersed into a
homogeneous negatively charged background with a
density ;

(9)
is the average magnitude of the non-Coulomb part of
the Ashcroft pseudopotential, rc is the core radius [13].
The quantity rc is evaluated from the condition

(10)
for the pressure P in metals as RN → ∞ and equilib-

rium (experimental) values  (see Table 1 in [25]).
Here and below, the overbar denotes values of the

quantities in a bulk of a homogeneous metal. All char-
acteristics of a defectless cluster are determined as a
result of minimizing one-dimensional functional (3).

The input data of the model are rs and Z. We recall
that the quantity  is strongly different for differ-
ent metals. For example,  = –0.06 and –2.49 eV
for Na and Al, respectively.

3. INTERNAL VACANCIES IN A METAL
Following the mechanism of vacancy blowing, we

assume that the number of atoms in the sample does
not depend on the presence of vacancies; the density
of atoms in the intervacancy bulk is the same as in the
absence of vacancies [7, 8] and the vacancies are dis-
tributed in the form of a superlattice.

ωR

ε�

δ = ε + ε + ωv � MWS R

ε = − 2
M 09 /10Ze r

n

ω = π 2 22R ce nr

= 0P

0
sr

δv WS
δv WS



86 POGOSOV

Fig. 1. Profile of an ion lattice with a surface vacancy and
energy diagram of electrons.
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The energy of a sphere containing N atoms and 
vacancies the centers of which are determined by
radius vectors Ri is written in the form of the func-
tional

(11)

The sphere radius  > Ri is determined from the
condition

(12)

Preserving the style of the SJ model, one can write
the spatial distribution of charges in expression (11) for
a defect cluster in the form

(13)

The electron distribution is not three-dimensional,
but one-dimensional only for the vacancy situated in
the center of the sphere: δn = δn(|r – Ri|). The charge
distribution satisfies the normalization conditions

(14)

In contrast to functional (3), functional (11) is three-
dimensional, which makes the numerical solution of
the optimization problem very laborious.

4. HOMOGENEOUS PSEUDOMETAL
The SJ functional in [13] was constructed using

averaging of the electron–ion pseudopotential inter-
action over the usual Wigner–Seitz cell with a radius r0
(mean field approximation). Let us do it in a similar
way in the case with the presence of vacancies.

We represent the vacancy contribution as the sum

(15)

where T0 is the energy of the ground state of the elec-
tron in a supercell with a radius
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(the energy is calculated in the zero radius potential
approximation) and  is the supercell bulk
averaged contribution of the potential energy from the
electron–vacation potential (Fig. 1) [5]. Now, the
quantity ε(0) can be included into the functional
together with the stabilization potential .

In accordance with this, we replace (11) by a func-
tional with one-dimensional distribution of charges,
as in expression (3):

(16)

For functional (16), one can propose an abbreviation
SJ + v.

Expressions (3) and (4) distinguish not only by the
presence of the zero-point energy ε(0) in (16) but also
by the average substance density in the metal for the
same N (compare (6) and (12)). The input data of the
SJ + v model (16) are rs, Z, and  (ε(0) ∝ ). For such
a pseudometal, the pseudopotential core radius rc

must depend on .

δ
v

v

veff ,

δv WS

+

+

= φ − +

− ε + δ + ε θ −



 

v

v
v�

,

(0)
,WS

[ ( )] ( )[ ( ) ( )] [ ( )]
2

( ) [ ] ( ) ( ).

N

N

eE n r d r n r n r G n r

d n r d r R n r

r

r r

v
c

v
c

v
c

SICS OF THE SOLID STATE  Vol. 61  No. 2  2019



MORE ON THE EFFECT OF VACANCIES ON METAL CHARACTERISTICS 87
For a semi-infinite metal ( , N → ∞; the axis

x = r –  is perpendicular to the metal (x ≤ 0) –vac-

uum (x > 0) interface), the equilibrium profile of elec-
trons n(x) is found as a result of the joint solution of a
system of Kohn–Sham equations with the effective
potential (Fig. 1)

(17)

and Poisson’s equation.

In accordance with (12) and electroneutrality con-
dition for such a pseudometal, the concentration of
charges in the metal bulk is lower on the average. As
x → –∞,

(18)

where na is the density of atoms (ions).

After the calculation of exact profiles of electron
and potential distributions, the work function

(19)

and specific surface energy

(20)

are calculated. Here, σJ is the functional correspond-
ing to the usual jellium. It contains the kinetic energy,
the exchange–correlation energy, and the electrostatic
component. The exact electron profiles corresponding
to the minimum of functional (16) should be substi-
tuted into this functional.

It is possible to propose an analytical method of
solving the problem without direct minimization of
functional (16).

5. ANALYTICAL APPROACH

According to the perturbation theory when the
presence of vacancies is considered as a small pertur-
bation, under the restriction of the mean field approx-
imation, it is sufficient to use the result of minimiza-
tion of functional (3) and electron and potential pro-
files of a defectless metal. Using this procedure is valid

when calculating only linear (with respect to ) cor-
rections to its characteristics.

Let us represent  and  in the form

(21)

where  is the electron density of the defectless metal
(coincides with (5)).

v,NR
v,NR

= φ + + δ + ε θv v v
(0)

eff xc WS
( ) ( ) ( ) [ ] ( )x e x x x

+→ = =
+

( ) ,
1

aZ n
n x n n

c
v

= − − ε ε = πv
�

2
2 2/3

eff F F, (3 )
2

W n
m

−∞

σ = σ + δ + ε −v

0

(0)

J WS
[ ] [ ( ) ],dx n x n

v
c

+n n

+ + += + +
= + +

v v v

v v v

0 1 2

0 1 2

( ) ( ),

( ) ( ),

n c n n c O c

n c n n c O c

0n
PHYSICS OF THE SOLID STATE  Vol. 61  No. 2  2019
From the expansion in small  in (18), using (21),
we obtain the trivial equalities

(22)

In the pseudopotential description of the metal, we
also represent

(23)

where  corresponds to a defectless metal. The quan-

tity  can be easily determined from the equation for

the internal pressure in the metal P = . Let

us expand P in powers of :

(24)

where  and  are determined from (22). Using the

condition of the absence of metal vapor P0 = 0,

(25)

definition of the compression bulk modulus B, and
expressions

we obtain

(26)

At the same time, using (9), we have

(27)

which leads to

(28)

For Al,  ≈ –0.05a0, where a0 is the Bohr radius.

The inequality rc( ) <  can be commented as fol-

lows. The appearance of vacancies with the following
averaging of the substance density lead to a decrease in
the internal pressure in the pseudometal which
becomes somewhat rarefied. The pressure becomes

negative (P( ) < P0 = 0) and the pseudometal loses its

stability. According to (27), the pressure can be
increased by decreasing the core radius. Therefore,

condition (25) is satisfied only at negative values of .
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Fig. 2. Temperature dependences calculated for Al by
(34)–(36): (a) resistivity ρ (with αρ = 29 from [5]), (b)
electron work function W, and (c) specific surface energy.
The dots (the experiment [2]) are in correspondence with
the value αρ = 100 in (34). The dashed lines are the linear
temperature dependences (in the formulas, the coeffi-
cients αρ, W, σ = 0).

750 800 850 900

9

10

11

8

T, K

R
e
si

st
iv

it
y,

 1
0
�8

 �
 m

4.27

4.28

S
u

rf
a

c
e
 e

n
e
rg

y,
 e

rg
/
c
m

2
W

o
rk

 f
u

n
c

ti
o

n
, 

eV

910

905

900

895

(a)

(b)

(c)

–[1]
By analogy with resistance (21), we represent the
electron work function and surface energy of the metal
containing vacancies in the form

(29)

where αW = W1/W 0 and ασ = σ1/σ0. Then, performing

in (19) the expansion in small  and using (22), we
have for the correction to the work function

(30)

Similarly, for surface energy (20), we obtain

(31)

(32)

Expressions (30)–(32) are the result of successive
determination of the vacancy dependence of the work
function and surface energy within the framework of
the SJ + v model.

6. CALCULATIONS

Table 1 presents the calculated characteristics of a
defectless metal and coefficients of first vacancy cor-
rections αW and ασ for Na and Al. The derivatives in

formulas (30) and (32) were calculated numerically for
functional (3) as ratios of the increments ΔW and Δσ
to small negative  at  = 0. Therefore, the calcula-

tions were carried out twice: for  (real metal) and for

a value rs (pseudometal) somewhat greater than .

Under the assumption   , the dependence rc( )

was not taken into account. In spite of this fact, signs
of the derivative in Table 1 reflect both the thermal
expansion effect and the effect of elastic mechanical
deformation of the metal [17–21], which lead to a
decrease in the atom density on the average (W and σ
decrease with an increase in rs (or a decrease in )).

The developed approach is simpler and more trans-
parent for analysis than the approach based on sum
rules and presented in [7, 8]. It makes it possible to
directly work in the Kohn–Sham version and to cal-
culate the corresponding derivatives in (30) and (32)
without using the gradient expansion of the functional
and manipulations with sum rules [7, 8].

7. EQUILIBRIUM VACANCIES

For a specified temperature T and with the use of
the expressions
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for the determination of (T) (5), Fig. 2 shows the

constructed temperature dependences

(34)

(35)

(36)

where λ = 24 × 10–6 K–1 and β = 4.3 × 10–3 K–1 are the

experimental values of the temperature coefficients of
linear expansion and electrical resistance, vacancy

formation energy  = 0.66 eV [2], and the calculated

value of the coefficient αρ = 29 from [5] for Al.

The derivatives in formulas (35) and (36) were cal-
culated using (33) as ratios of the increments ΔW0 and

Δσ0 to small positive ΔT at  = 0 and rc = rc(T). The

calculated quantities have a descending temperature
dependence. In spite of rather weak changes in the

work function in Fig. 2b, it is quite possible to trace its
behavior experimentally [22, 23].

The values ε(0) in (30) and (32), as well as αρ in

(34), were calculated within the framework of the

same theory [5]. Since the value of αρ turned out to be

underestimated by approximately three times as com-
pared to the experiment (dots in Fig. 2a), one can sup-
pose that the calculated values of the coefficients αW
and ασ in Figs. 2b and 2c are also underestimated. Fol-

lowing this, one can expect that vacancy dependences
of the work function and surface energy will manifest
themselves in experiments much more considerably
than those presented in Fig. 2.

As a result of the proposed approach, the vacancy

contribution to the work function and surface energy is
expressed only in terms of characteristics of a defect-
less metal. It is evident that functional (16) in the pro-

cess of searching vacancy corrections linear in  cor-

responds to the mean field approximation typical for
jellium-like models. The idea of a vacancy superlattice
presupposes the presence of intervacancy correlations
which were not taken into account in this work. Taking

them into account requires additional investigations.
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