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Abstract—Based on the free energy density functional method (modified Cahn–Hillard–Cook equation),
the formation kinetics of secondary phases in binary alloys is considered in the presence of composition fluc-
tuations and with inclusion of the grain boundaries influences. It is revealed that the existence of grain
boundaries and the f luctuations at the initial stage of the phase transition can lead to the appearance of anom-
alous growth rate of the average precipitate size due to a competition of various decomposition mechanisms.
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1. INTRODUCTION
Most of metal-based solid solutions have polycrys-

talline structures; i.e., they consist of a great number
of grains with different orientations with respect to
each other [1–5]. The conjugation regions of neigh-
boring grains (grain boundaries) are defects of a crys-
tal structure that can substantially influence the distri-
bution of point defects and alloying components of
alloys, the formation of secondary phases during the
solid solution decomposition, and also the mechanical
and other properties [1–5] that are important for prac-
tical applications of this type of material.

One of important problems of studying the proper-
ties of polycrystalline materials is establishing the
influence of grain boundaries on the first-order phase
transition related to the formation of secondary phase
precipitates [1]. The main method of analyzing this
type of phase transitions is the method of the free
energy density functional [6–8] that also can be used
for analyzing the formation of precipitates at the inter-
faces [9, 10] or at the grain boundaries [1]. In this type
of phase transition (wetting phase transition), the pro-
cess of formation or transformation is considered, as a
rule, for a material layer disposed on grain boundaries
[1, 14] or substrate boundary [9–13]. In this case, the
wetting phase can be both liquid and solid [1, 9, 10,
14], and the wetting itself can be complete or partial [1,
9–14]. In the case of partial wetting, the surface layer
can be transformed by the spinodal mechanism [10–
13] or by the nucleation mechanism with the forma-
tion of individual precipitates at the corresponding
interfaces [10–14]. The existence of wetting phase
transitions at grain boundaries was experimentally
observed for various metallic alloys [14–16].

In [17, 18], the free energy density functional
method was used to develop the phenomenological
model describing the influence of grain boundaries on
the process of distribution of components between the
grain-boundary region and the grain bulk. The simu-
lation carried out in [17, 18] showed that various types
of distribution of the system components, such as
depletion or enrichment of the grain-boundary
region, dominant grain-boundary or bulk precipita-
tion, and also competitive and mixed regimes of for-
mation of secondary phases can be observed in the
dependence on the degree of supersaturation, the alloy
temperature, and also the character of changes in the
interaction parameters near grain boundaries. This
model also enables a successful consideration of the
formation of precipitate-free zones near grain bound-
aries. The appearance of complete or partial wetting of
the grain boundary can be observed as the interaction
parameter near the grain boundaries decreases [17].

The f luctuations are a most substantial factor in the
formation of secondary phase precipitates in the
region of stable and metastable states, where the over-
coming of the nucleation barrier is necessary to form
stable nuclei [5]. The f luctuations substantially influ-
ence the first-order phase transitions in the systems
not containing structural defects [19–23] and also the
wetting phase transitions [13]. In this connection, the
aim of this work is to generalize the determined model
developed before [17, 18] on the case of the existence
of thermal f luctuations described within the f luctua-
tion–dissipation theorems [22–26]. In this case, it is
necessary to determine the peculiarities of the forma-
tion of secondary phase precipitates in the conditions
of the f luctuations.
225
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2. MAIN APPROXIMATIONS OF THE MODEL
Consider the formation of the secondary phase

precipitates in a three-dimensional cubic fragment of
binary alloy with linear size L using the free energy
density functional method. Let a plane immobile
boundary of two grains described by equation z = L/2
be located inside the volume under consideration.
According to the assumption of [17], we will believe
that the parameter of quasi-chemical interaction Ω is
dependent on coordinates Ω = Ω(x, y, z) and is
described by exponential dependence [18]

(1)

where Δ = (ΩGB – Ω0)/Ω0 is the parameter the change
in that determines the maximum difference between
the interaction parameter in bulk (Ω0) and at the grain
boundary (ΩGB). The change in interaction parameter
Ω takes place at a small characteristic length δ0 that is
of the order of several lattice parameters (δ0  L). The
sign and the value of parameter Δ influence the char-
acter of distribution of the solution components
between the grain-boundary region and grain bulk [17,
18]. In this work (for the sake of being definite) we
consider the case of a decrease in the parameter of the
quasi-chemical interaction when approaching the
grain boundary Δ < 0, which corresponds to the effec-
tive decrease in the critical temperature and the degree
of supersaturation near grain boundaries [17]. The
case Δ > 0 in the absence of f luctuations was consid-
ered in [18].

The existence of the dependence of the interaction
parameter on the concentration field c, and also the
effects related to a change in the grain size [27, 28] or
the transition of the grain boundary to a liquid state [1]
are not considered in this work.

Using the standard methods of the free energy den-
sity functional theory [6–8], by analogy with [17, 18],
the modified Cahn–Hillard–Cook equation taking
into account the dependence of the interaction
parameters on coordinates can be obtained

(2)

where c ≡ c(x, y, z) is the concentration field of the dis-
solved component, M is the mobility, κ is the gradient
energy coefficient that is related to the parameter of
quasi-chemical interaction κ = κ0Ω(x, y, z)a2 [17, 18],
a is the lattice parameter, κ0 is the constant depending
on the interatomic interaction potential, and ξ is a
random Gaussian field, the correlation function of
which is described using the f luctuation–dissipation
theorem for conserving the order parameter [25, 26]:

(3)
ε is the dimensional quantity that determines the f luc-
tuation amplitude, δ is the Dirac delta function, kB is
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the Boltzmann constant, and g ≡ g(c) is the free mixing
energy of alloy per one particle in the regular solution
approximation

For an alloy that has no structural defects, the param-
eter of quasi-chemical interaction is related to the crit-
ical temperature Ω = 2kBTC.

In the free energy density functional theory, the dis-
placement of atoms can be characterized by effective

diffusion coefficient [7]: Deff = . In the consid-

ered case (Δ < 0), the ratio of the effective diffusion
coefficients at the grain boundary and in grain bulk for
the mean composition is  > 1, which corre-
sponds to an accelerated diffusion over grain boundar-
ies. This ratio becomes significant (   1) only
when approaching the metastability boundary, where
the second derivative becomes zero. In addition, a
number of alloys demonstrate in practice a substantial
(by several orders of magnitude) increase in the diffu-
sion coefficient at grain boundaries (for example,
[29–32]) that is likely to be related to a decrease in the
diffusion activation energy. The simulation of the evo-
lution of such alloys can be carried out based on the
Cahn–Hillard (or Cahn–Hillard–Cook) equation
with the inclusion of a variable mobility [33, 34] that
should be taken as a quantity depending on coordi-
nates, by analogy with the dependence of the interac-
tion parameter Ω considered in this model [17, 18]. In
this work, we do not consider the systems in which the
mobility coefficient of the alloy components is
changed near grain boundaries.

Going in Eqs. (2), (3) to order parameter η = 2c – 1
and assuming that mobility M is a constant value, we
transform Eq. (2) to form

(4)

where κ* = , τ = , r* = r/a, ∇* = a∇, ξ* =

, a is the lattice parameter, and φ is the dimen-

sionless function

where the notations of the dimensionless values are
T* = 2kBT/Ω0, Ω* = Ω(x, y, z)/Ω0. In this case, the
random Gaussian field ξ* corresponds to the correla-
tion function

(5)

where d is the system dimension (d = 3).
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We believe that the boundary conditions of this
alloy fragment are periodic. We will determine the ini-
tial condition by a random Gauss distribution of the
order parameter that is characterized by a mean value
corresponding to alloy composition cM and a small
dispersion of ~10–2.

3. NUMERICAL METHODS
Taking into account the dependence of the interac-

tion parameters on coordinates [17, 18] and the exis-
tence of the f luctuation component [23–26], Eq. (4)
can be solved based on the spectral method [33–36]
that leads to the difference scheme in the form

(6)

where  is the Fourier transform of the order param-
eter at the moment of time τn = nΔτ,  and 
are the direct and reciprocal Fourier transforms,
respectively,  is the Fourier transform of the deriva-
tive of φ on the free energy density at the moment of

time τn, k and k' are wave vectors,  is the Fourier

transform of the random field ξ'(r*) = ,
τ')dτ', that is not dependent on time τ with the inclu-
sion of Eq. (5). The dimensional constant  chosen
from stability considerations of the difference scheme
(6) was taken to be  = 1.

From Eq. (5), the expression for the correlation
function [20–23] for random values  is

where function Γ(k) is determined as

where N is the normalization constant of the Fourier
transform. Now, the direct calculation of  can be
carried out as  = ak + ibk, where ak and bk are random
quantities that satisfy the Gauss distribution and char-
acterized by a number of properties [19, 20, 23]:

All alloys have an atomic nature, and this fact
should be taken into account by the introduction of
the maximum value of wave vector kmax (cutoff param-
eter) [22, 23, 25]. This value implies the absence of the
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concentration waves of material with the wavelength
smaller than λ < 2π/kmax. This condition can be
reflected using the condition imposed on the Fourier
components of a random field ξ':  ≡ 0 at |k| > kmax
[20, 25, 36]. The selection of the amplitude and the
cutoff parameter (parameters ε and kmax) can substan-
tially influence the result of simulating the phase tran-
sition process [20–23], including the calculated values
of rates of nucleation and the growth of precipitates
[23]. This peculiarity is explained by some distortion
of the phase equilibrium by f luctuations that can lead
to effective change in the critical temperature [37].
Further the simulation will be carried out at the
parameters ε = 0.25, kmax = 1.2a–1 considered in [23].

The secondary phase precipitates were identified
using the nearest neighbor method [38] according to
the algorithm developed in [34, 39]. The threshold
value of the averaged composition that allow us to refer
an arbitrary lattice site to the secondary phase was
taken to be Cmin = 50 at %. The precipitate size was
characterized by equivalent radius R [34, 38]. The pre-
cipitate concentration XC was calculated as XC = NC/V,
where NC is the total number of observed precipitates,
and V is the volume occupied by the system under
consideration.

4. SIMULATION RESULTS
The decomposition of the three-dimensional cubic

alloy fragment with size L = 256a and having a plane
grain boundary with coordinate z = L/2 was calculated
using the proposed method and the difference scheme
(6). The simulation was carried out at temperature
T* = 0.65 and alloy compositions cM = 10 and 11 at %.
The change in the interaction at the grain boundary
was described by values Δ = –0.25, δ0 = 2a, and κ0 =
0.2. The time step was taken to be Δτ = 5.0 ± 10–4.

Figure 1 shows the results of simulation of the evo-
lution of the concentration field. It follows from Fig. 1
that, in the case cM = 10 at %, the regime of the
dominant grain-boundary precipitation [17, 18] is
observed, which corresponds to a partial wetting of the
grain boundary [1, 14–16]. Small nuclei that form far
from a grain boundary are unstable and undeniably
dissolved, which is most likely related to a high value
of the nucleation barrier observed at low degrees of
supersaturation [5, 6]. In the case of higher concentra-
tion cM = 11 at %, a mixed decomposition regime [17,
18], in which precipitates form both in the grain bulk
and at the grain boundary.

In both these cases, the secondary phase precipi-
tates have a lenslike (lamellar) shape at grain boundar-
ies and a shape close to spherical ingrain bulk. The
observed geometry of precipitates (Fig. 1) at the grain
boundary and in the grain volume with the results of
experimental studies of the wetting phase transitions at
grain boundaries for a number of alloys [14–16].

ξ'k
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Fig. 1. Phase distribution in binary alloys with compositions (a, b, c) cM = 10 at % and (d, e, f) cM = 11 at % at temperature T* =
0.65 and at different moments of time: (a, d) τ = 75, (b, e) τ = 150, (c, f) τ = 900.
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The existence in the system of long-wavelength
fluctuations lead to the appearance of a surface relief
of precipitates disposed in the grain bulk [23] and at
PHY
the grain boundaries, too. The f luctuations also cause
the inconstancy of the contact angle that can be
changed during grain growth within quite wide limits.
SICS OF THE SOLID STATE  Vol. 61  No. 2  2019
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Fig. 2. Dependence of precipitate mean size R in binary

alloy on annealing time τ for alloys (curve 1) cM = 11 at %

and (curve 2) cM = 10 at %. The dotted lines show the

approximation of corresponding calculation data by the

power functions R ∝ τα: α = (3) 0.48 ± 0.02, (4) 0.39 ±
0.03, (5) 0.87 ± 0.01, (6) 1.1 ± 0.03, (7) 0.34 ± 0.01, and

(8) 0.59 ± 0.01.
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When analyzing the contact angles of coarse precipi-
tates that form at grain boundaries of the considered
alloys at the late stage, the angles were 52° ± 10° for
cM = 11 at % and 56° ± 11° for cM = 10 at %. The coin-

cidence of the obtained contact angles within the lim-
its of the error is quite expected and is provided at the
same temperatures and interaction parameters for
both alloys.

To study the kinetics of the mean size, the concen-
tration, the distribution function of precipitates at the
initial stage (τ < 275), the independent simulations
were carried out for four solid solution fragments using
the difference scheme (6). The characteristics of the
phase distribution for this interval were determined by
their averaging over all independent realizations [18,
40]. For later time intervals (τ > 275), one attempt of
the calculations was carried out because of substantial
calculation time. In the range 0 < τ < 1600, the calcu-
lation duration was about four days.

Figures 2 and 3 show the calculation results of the
kinetics of the precipitate mean size and their concen-
tration, respectively. As follows from Figs. 2 and 3, the
known mechanisms of formation of the secondary
phase precipitates (nucleation, growth, coagulation,
and coalescence) are observed in the compositions
and for time intervals considered in this work. In addi-
tion, the growth rate of the precipitate mean size is
substantially different from the known dependences
established in the classical nucleation theory [5, 41] for

the stages of diffusion growth (R ~ τ1/2) and coales-

cence (R ~ τ1/3). These dependences are quite well
confirmed based on the simulation of nucleation in
binary alloys with a constant mobility that does not
contain structural defects in the absence of the com-
position f luctuations [34, 42].
PHYSICS OF THE SOLID STATE  Vol. 61  No. 2  2019
At the stage of nucleation, the mean size growth
close to a power law was observed in both considered
cases. In this case, the stage of diffusion growth was
characterized by an accelerated growth of the precipi-
tate mean size as compared to the classical theory of
diffusion growth, according to which the precipitate

radius must be changed as R ~ τ1/2 [5, 41]. The reason
of the anomalous power growth at the initial stage is a
combination of decomposition mechanisms observed
at considered low concentrations of the dissolved
component. So, at the initial stage, the nuclei form
during fairly long time. The stable nuclei formed ear-
lier undergo the diffusion growth due to the inflow of
atoms from the matrix. Simultaneously, new nuclei
form; in this case, the effective mean size growth rate
is lower than that assumed by the diffusion growth the-

ory R ~ τα (α < 1/2). Then, as the degree of supersat-
uration decreases, the nuclei formed later are in an
unstable state and are dissolved fast. This process is
combined with continuing diffusion growth of stable
nuclei, which leads to the effective growth of the mean

size R ~ τα (α > 1/2). The existence of the grain
boundaries also provides different rates of formation
and growth of the precipitates in the bulk and at the
grain boundaries, that are actually at different stages of
decomposition, which exactly leads to a change in the
exponent α.

The growth rate is substantially slowed down to the
end of the time interval under consideration (τ >
1000), and this fact can be due to a gradual transition
to the coalescence stage. This intermediate stage (also
[34, 40, 42]) is characterized by a slight increase in the
mean size as the precipitate concentration decreases
slowly. The intermediate stage is expected can be sub-
stantially longer than that for the alloy without grain
boundaries [34, 42], which is related to a combination
of several mechanisms: coagulation (coalescence) of
precipitates located at a grain boundary and also the
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Fig. 4. Dependence of nucleation rate IC of the secondary

phase precipitates in the binary alloys characterized by
compositions (curve 2) cM = 10 at % and (curve 1) cM =

11 at % at temperature T* = 0.65.
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diffusion growth of these precipitates due to a material
coming from the matrix. At this stage, we also observe
the dissolution of fine precipitates characteristic of the
coalescence mechanism; however, this mechanism is
not dominant. In addition, the f luctuations also sub-
stantially influence the processes of material transfer
and the growth of precipitates (also, [23]).The study of
the growth of the secondary phase precipitates at the
later stage requires the increase in computer power or
the simulation time approximately by one–two orders
and also substantial increase in the system size.

This model can be also used to state some peculiar-
ities of the kinetics of the formation of the second
phase precipitates. The precipitate growth rate can be
determined as the derivative on the concentration of
observed precipitates IC = dXC/dτ [43]. In the classical

and nonclassical nucleation theories, this quantity is
usually associated with supercritical nuclei [5, 41, 43].
In this case, the interaction parameters are dependent
on coordinates and the change in the alloy composi-
tion over the system volume at the nucleation stage is
determined by the f luctuations. In this case, it seems
to be impossible to distinguish the supercritical nuclei
from other nuclei and inhomogeneities of the compo-
sition formed in the system due to the f luctuations
[23, 34, 43]. In this connection, the quantity IC is

actually a detectable nucleation rate [43], the value of
which can be dependent on the used method of iden-
tification of the nuclei.

Figure 4 shows the dependence of the nucleation
rate for two considered alloy compositions. Since the
considered quantity has a substantial random compo-
nent, when constructing these curves, the smoothing
by the moving average method was used [44]. As fol-
lows from Fig. 4, the decrease in the alloy composition
leads to a decrease in the nucleation rate and also to a
marked increase in the incubation time of nucleation.
PHY
This feature agrees well with the conclusions of the
nonclassical nucleation theory [5, 6], in which it was
stated that the critical size and the incubation time
increases as the degree of supersaturation (for exam-
ple, [34, 45, 46]).

The considered approach that also allows one to
observe the evolution of the size distribution function,
the results of calculation of which for the considered
alloys (cM = 10 and 11 at %) are shown in Fig. 5. As fol-

lows from these plots, the distribution functions for
the considered alloys demonstrate the evolution simi-
lar to that of the alloys that have not structural defects
[23, 34, 42]. At initial stage, nucleus sizes have a quite
wide scatter: the maximum value of R can be larger by
a factor of more than two (umax > 2.0) than R
(Figs. 5a and 5c). At the later stage, the distribution
function approaches a function that is determined by
the Lifshitz–Slyozov theory (umax ~ 3/2). The forma-

tion of the stationary size distribution function for the
alloy with a lower composition slows down noticeably
(Figs. 5b, 5c). It should be noted that, at the later
stage, the shape of the stationary size distribution
function is substantially dependent on the mechanism
of material transfer [47]. In general case, the combina-
tion of several mechanisms or the dominance of one of
them (for example, the grain-boundary diffusion) can
lead to the distribution functions that substantially dis-
tinguish from the conclusions of the Lifshitz–Slyozov
theory built for the case of the volume diffusion of the
dissolved component [47]. In the systems that are
characterized by various mass-transfer mechanisms,
we expect the appearance of stationary distribution
functions of the precipitates with various values of
parameter umax. Despite the substantially different

conditions of formation of the precipitates, we did not
observe principal differences between the distribution
functions for the cases of the grain-boundary precipi-
tation (cM = 10 at %) and a combined decomposition

regime (cM = 11 at %) considered in this work, and this

fact is likely to be related to the dominance of the
material transfer over the system volume. A possible
reason of insignificant difference of the distribution
function is also an insufficiency of the time interval
during which the stationary distribution function
could not be attained.

5. CONCLUSIONS

Based on the model developed and the simulation
carried out in this work, we can make the following
conclusions on the process of precipitation at grain
boundaries that can be observed if the introduction
parameter between the solution components decreases
when approaching the grain boundary.

The most pronounced influence of grain boundar-
ies on the precipitation is observed at low degrees of
supersaturation. In this case, the formation of nuclei
occurs immediately at the grain boundary, and no pre-
SICS OF THE SOLID STATE  Vol. 61  No. 2  2019
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Fig. 5. Size distribution function (u = R/R) in the case of precipitate formation at grain boundaries for the alloys with compo-

sitions (a, b) cM = 10 at % and (c, d) cM = 11 at % at different moments of time τ = (a, c) 400 and (b, d) 1600 at temperature T* =

0.65. The solid line shows the size distribution function according to the Lifshitz–Slyozov theory.
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cipitates are observed in the grain bulk. The main rea-
son is a decrease in the nucleation barrier near grain
boundaries due to a lower interaction parameter. The
overcoming of the nucleation barrier is provided due
to long-wavelength f luctuation of the alloy composi-
tion.

An increase in the dissolved component concen-
tration leads to the transition to a combined mecha-
nism of formation of the precipitates when stable
nuclei form both in the grain bulk and at the grain
boundaries and also to an increase in the f luctuation
nucleation rate and a decrease in the incubation time.
In this case, the durations of the nucleation and diffu-
sion growth stages decrease.

The f luctuations lead to the appearance of surface
relief of the precipitates, which substantially influ-
ences the determined contact angles. The contact
angle can be changed within fairly wide limits as the
precipitates grow, but it is changed less substantially
for coarse precipitates formed at the later stage.

The f luctuations and the dependence of the inter-
action parameters on coordinates related to the exis-
tence of the grain boundaries lead to the appearance of
some features of the precipitate growth. At the initial
stage, we can separate a portion of a weak power

growth of precipitates (R ∝ τα, α ~ 0.3). At the stage
of diffusion growth, the existence of grain boundaries
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and composition f luctuations can lead to the appear-

ance of accelerated growth of precipitates (α > 1/2). In

the case of the dominant grain-boundary precipita-

tion, the transition to the coalescence stage can be

retarded substantially. The accelerated growth can be

caused by a complex of causes related to the system

under consideration. First, the existence of the com-

position f luctuations leads to simultaneous observa-

tion of several mechanisms of the secondary phase

formation: the nucleation, the diffusion growth, and

the dissolution of precipitates, and also their coales-

cence (coagulation). This combination of various

mechanisms of the secondary phase formation can

substantially influence the growth rate of the mean

size of the secondary phase precipitates. Second, a

decrease in the interaction energy near the grain

boundary leads to the difference of the degrees of

supersaturations in the grain bulk and at the grain

boundaries; in this case, the effective diffusion coeffi-

cient near grain boundaries increases, which causes

the difference of material f lows along the grain bound-

ary and from the grain bulk to the boundary. In addi-

tion, since the secondary phase formation and the

growth rates at the grain boundaries and in the grain

bulk are different, the grain decomposition in these

regions can be at different stages, which also causes a

change in the growth rate of the precipitate size and
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the concentration averaged over the entire system
under consideration.
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