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Abstract—Critical relaxation from the low-temperature ordered state of the three-dimensional fully frus-
trated Ising model on a simple cubic lattice is studied by the short-time dynamics method. Cubic systems with
periodic boundary conditions and linear sizes of L = 32, 64, 96, and 128 in each crystallographic direction
are studied. Calculations were carried out by the Monte Carlo method using the standard Metropolis algo-
rithm. The static critical exponents for the magnetization and correlation radius and the dynamic critical
exponents are calculated.
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1. INTRODUCTION

The investigation of dynamic critical properties of
spin systems is one of the topical problems of modern
statistical physics and physics of phase transitions. To
date, significant progress has been made in this area,
mainly due to theoretical and experimental research.
Nevertheless, the development of a rigorous and con-
sistent theory of dynamic critical phenomena based on
microscopic Hamiltonians is one of the central prob-
lems of the modern theory of phase transitions and
critical phenomena, which is still far from being
solved.

Recently, the method of short-time dynamics [1–
5] has been successfully used to study the critical
dynamics of the models of magnetic materials [1–5],
in which the critical relaxation of a magnetic model
from a nonequilibrium state to equilibrium is studied
within the A model (the Halperin and Hohenberg
classification of universality classes of the dynamic
critical behavior [6]). Traditionally, it is believed that
universal scaling behavior exists only in thermody-
namic equilibrium. However, it was shown that the
universal scaling behavior for some dynamic systems
can be realized at the early stages of their evolution
from a high-temperature disordered state to a state
corresponding to the phase transition temperature [7].
This behavior is realized after a certain time, which is
sufficiently large in the microscopic sense but remains
small in the macroscopic sense. A similar picture is
observed in the case of the evolution of a system from
the low-temperature ordered state [1, 2].

Earlier, we studied the critical relaxation from the
low-temperature ordered state of a three-dimensional
fully frustrated Ising model on a simple cubic lattice
for a linear dimension of L = 64 [8]. In this paper, we
estimate the critical relaxation of this model for the
linear dimensions of L = 32, 64, 96, and 128 in order
to estimate the influence of system sizes on the result
obtained. In addition, we improved the statistics of
calculations and modified the method for determining
the critical temperature. This allowed us to increase
the accuracy of determining the critical temperatures
and critical exponents.

2. METHOD OF STUDY
Using the renormalization group method, the

authors of [7] showed that, far from the equilibrium
point, after a microscopically small time, for the kth
moment of magnetization, the scaling form

(1)
is realized, where M(k) is the kth moment of magneti-
zation, t is the time, τ is the reduced temperature, L is
the linear size of the system, b is the scale factor, β and
ν are the static critical exponents for the magnetization
and correlation radius, z is the dynamic critical expo-
nent, and x0 is a new independent critical exponent
that determines the scaling dimension of the initial
magnetization m0.

For systems with sufficiently large linear sizes L,
starting from the low-temperature ordered state
(m0 = 1) at the critical point (τ = 0), the theory pre-
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Fig. 1. Fully frustrated Ising model on a simple cubic lat-
tice. White color indicates ferromagnetic coupling (J > 0),
and black color, antiferromagnetic (J < 0).
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Table 1. Temperatures at which the calculations were per-
formed

L T1 T2 T3 T4 T5

32 1.3387 1.3437 1.3487 1.3537 1.3587
64 1.3387 1.3437 1.3487 1.3537 1.3587
96 1.3389 1.3439 1.3489 1.3539 1.3589

128 1.3387 1.3437 1.3487 1.3537 1.3587
dicts (setting b = t1/z in Eq. (1)) a power-law behavior
of the magnetization in the short-time mode:

(2)

Logarithmizing both sides of Eq. (2) and taking the
derivatives with respect to τ at τ = 0, we obtain a power
law for the logarithmic derivative:

(3)

For the Binder cumulant UL(t) calculated from the
first and second moments of magnetization, the the-
ory of finite-size scaling gives the following depen-
dence at τ = 0:

(4)

where d is the dimension of the system.

Thus, in one numerical experiment, the short-time
dynamics method allows one, using relationships (2)–
(4), to determine the three critical exponents β, ν, and
z. In addition, dependences (2) constructed for differ-
ent temperatures allow one to determine the value of
Tc from their deviation from a straight line in the log–
log scale.

3. THE MODEL

Using the given method, we studied the critical
relaxation from the low-temperature ordered state of a
three-dimensional fully frustrated Ising model on a
simple cubic lattice. This model was first proposed by
Villain [9] in the two-dimensional case on a square
lattice for describing spin glasses. Later it was general-
ized by Blankschtein [10] to the three-dimensional
case. The model is shown schematically in Fig. 1.

Interest in this model is due to the fact that the
study of frustrated systems focuses on models on trian-
gular and hexagonal lattices, while the properties of
models on a cubic lattice have been studied little. In
particular, the dynamic critical behavior of these sys-
tems has not been studied at all.

The Hamiltonian of the frustrated Ising model can
be represented in the form

(5)

where Si is the Ising spin at the ith lattice site, Jik is the
exchange interaction between spins for ferromagnetic
(J > 0) and antiferromagnetic (J < 0) coupling. Frus-
trations in this model are caused by the competition of
exchange interactions [9].

− β=
ν

1
1( ) ~ , .cM t t c

z

−
τ τ=∂ τ =

ν
1

10
1ln ( , )| ~ , .lc

lM t t c
z

= − =
(2)

2( ) 1 ~ , ,
( )

Uc
L U

M dU t t c
zM

= − = ±∑
,

1 , 1,
2 ik i k i

i k

H J S S S
PHYSICS OF THE SOLID STATE  Vol. 60  No. 6  2018
4. RESULTS

We studied cubic systems with periodic boundary
conditions containing L × L × L unit cells. The calcu-
lations were performed for systems with linear sizes
L = 32, 64, 96, and 128, respectively, containing N =
32768, 262144, 884736, and 20977152 spins by the
Monte Carlo method using the standard Metropolis
algorithm. The relaxation of the system started from
the initial low-temperature fully ordered state with the
initial magnetization m0 = 1 and lasted for a time tmax =
1000, where the unit of “time” is one step of the
Monte Carlo method per spin. The relaxation depen-
dences for each temperature were calculated n times,
and the obtained data were averaged. The number n
depended on the size of the system and was taken
equal to n = 105 for L = 32 and 64, n = 8 × 104 for L =
96, and n = 7 × 104 for L = 128. It should be noted
that, in [8], we used n = 5 × 104 for a linear size L = 64.

For each linear size, the calculations were carried
out at five values of temperature in the vicinity of the
phase transition point. These values in units of the
exchange integral kbT/|J| are given in Table 1. The



1122 MUTAILAMOV, MURTAZAEV

Fig. 2. Time dependence of magnetization at five tempera-
tures for a linear sizes of L = 64. The temperatures are
given in Table 1.
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Fig. 3. Time dependence of magnetization at the phase
transition point for all linear sizes L.
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value of T3 was chosen as close as possible to Tc. From
the results obtained, dependences (2), (3), and (4)
were approximated by least squares in the temperature
interval from T1 to T5 with a step ΔT = 10–5.

The critical temperature was determined from the
time dependence of the magnetization (2), which, at
the phase transition point, must be a straight line in
the log–log scale. The deviation from the straight line
was determined by the method of least squares. The
critical temperature was the temperature at which this
deviation was minimal. Figure 2 shows a typical time
dependence of the magnetization at different tempera-
tures (hereinafter, all values are given in arbitrary
units). The critical temperatures found in this way for
all linear sizes are given in Table 2.

In [8], we analyzed the temperature curves of the
magnetization with a step ΔT = 10–4 near the phase
transition point, after which we performed direct cal-
culations at the critical temperature found. The mod-
ification in the procedure of determining the critical
temperature in this work made it possible to increase
the accuracy of our calculations.

The obtained time dependences of the magnetiza-
tion, its logarithmic derivative, and the Binder cumu-
lant at the critical point in the time interval t = [10;
1000] are presented in the log–log scale in Figs. 3, 4,
and 5, respectively. The solid lines represent the results
PHY

Table 2. Critical exponents and critical temperatures

L Tc c1 cl1

32 1.34362(2) 0.142(3) 0.702(3)
64 1.34872(3) 0.184(3) 0.839(3)
96 1.34870(3) 0.183(3) 0.839(3)

128 1.34873(3) 0.183(3) 0.839(3)
for the linear sizes L = 64, 96, and 128. The dashed
lines represent the results for the linear size L = 32.

As can be seen from Figs. 3 and 4, the graphs for
L = 64, 96, and 128 practically coincide with each
other. In particular, the difference in the values of M at
each instant of time t for each of these sizes L is on the
order of 10–3. However, the dependences for L = 32
are significantly different and their behavior signifi-
cantly deviates from the scaling behavior for the times
t  1000. As a result, the graphs for L = 32 in the log–
log scale are not straight lines even at the phase transi-
tion point.

The situation with the time dependence of the
Binder cumulant is slightly different. Since the value
of the cumulant is small, the difference in the depen-
dences for different linear sizes is manifested rather
well. The approximation lines plotted by formula (4)
for L = 64, 96, and 128 do not coincide but have
almost the same slope angle. For L = 32, as in the case
of Figs. 3 and 4, the scaling behavior is not realized
and its graph is not a straight line in the log–log scale.

Analysis of the graphs showed that the power scal-
ing behavior of the system with the linear sizes of L =
64, 96, and 128 is realized starting from the time about
t = 150. Therefore, all the curves were approximated in
the time interval t = [200; 1000]. The logarithmic
derivative at the phase transition point was calculated
by the least squares approximation over the five time

�
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cU β ν z

1.186(7) 0.202(4) 0.563(4) 2.530(7)
1.343(7) 0.220(4) 0.534(4) 2.234(7)
1.345(7) 0.218(4) 0.534(4) 2.230(7)
1.344(7) 0.218(4) 0.534(4) 2.232(7)
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Fig. 4. Time dependence of the derivative of the logarithm
of magnetization at the phase transition point for all linear
sizes L.
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Fig. 5. Time dependence of Binder cumulant at the phase
transition point for all linear sizes L.
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dependences of the magnetization constructed for the
temperatures presented in Table 1. We note that, in
[8], the logarithmic derivative was calculated using
three dependences of the magnetization on time.

As a result of the least squares approximation of the
obtained data in the time interval t = [200; 1000],
the exponents c1, cl1, and cU were calculated by formu-
las (2)–(4). This made it possible to calculate the static
critical exponents for β, the static critical exponents
for the correlation radius ν, and the dynamic critical
exponents for z. All our results are presented in
Table 2.

As can be seen from Table 2, the values of critical
exponents and critical temperatures for the linear sizes
L = 64, 96, and 128 are equal within the error and the
values for L = 32 are significantly different from them.
Strictly speaking, it is not entirely correct to speak
about critical exponents for L = 32, since the scaling
behavior is not fully realized for this size.

Due to the strong influence of the size effects, it is
impossible to accurately determine the critical tem-
perature and critical exponents for L = 32. Therefore,
the results for this system should be excluded from
consideration. In this case, for the systems with the
linear sizes of L = 64, 96, and 128, no appreciable
influence of the size effects on the result is observed.

Table 3 presents the literature data on the static
critical properties of the model under consideration
PHYSICS OF THE SOLID STATE  Vol. 60  No. 6  2018

Table 3. Literature data

Parameter  [11]  [12]  [13]

Tc 1.344(2) 1.355(2) 1.347(1)
β 0.21(2) − 0.25(2)
ν 0.55(2) 0.55(2) 0.56(2)
[11–13]. Comparison of Tables 2 and 3 shows that our
results for the linear dimensions L = 64, 96, and 128
are in a good agreement with the results of these works.
The dynamic critical exponent for the fully frustrated
Ising model was obtained in this work for the first time
and is close to the theoretically predicted value for
anisotropic magnets (z = 2, model A [6]). The differ-
ence from z = 2 can be explained by the influence of
frustrations, but a definitive answer to this question
requires further studies of the critical dynamics of
frustrated systems.

5. CONCLUSIONS

The results of the work demonstrate the efficiency
of applying the short-time dynamics method to the
study of the critical properties of three-dimensional
models with frustration. The advantage of this method
is that it allows one to obtain in one numerical experi-
ment not only the dynamic critical exponent but also
the static critical exponents and the critical tempera-
ture. In addition, this approach does not exhibit criti-
cal slowing down, since the spatial correlation radius
remains small in the short-time interval even near the
critical point [7]. It has been shown that, for a fully
frustrated Ising model with a linear size of L = 64 and
more, there is no influence of finite sizes on the result
obtained.
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