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Abstract—The expression for the cubic-type-anisotropy constant created by defects of “random local anisot-
ropy” type is derived. It is shown that the Imry–Ma theorem stating that in space dimensions d < 4 the intro-
duction of an arbitrarily small concentration of defects of the “random local anisotropy” type in a system with
continuous symmetry of the n-component vector order parameter (O(n) model) leads to the long-range order
collapse and to occurrence of a disordered state, is not true if an anisotropic distribution of the defect-
induced random easy axes directions in the order parameter space creates a global anisotropy of the “easy
axis” type. For a weakly anisotropic distribution of the easy axes, in space dimensions 2 ≤ d < 4 there exists
some critical defect concentration, when exceeded, the inhomogeneous Imry–Ma state can exist as an equi-
librium one. At the defect concentration lower than the critical one the long-range order takes place in the
system. For a strongly anisotropic distribution of the easy axes, the Imry–Ma state is suppressed completely
and the long-range order state takes place at any defect concentration.
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1. INTRODUCTION
Despite long-standing investigations of the systems

with n-component vector parameter (O(n)-models),
containing defects of the “random local anisotropy”
type, we still have not a clear knowledge of their equi-
librium properties.

On the one hand, the validity of the Imry–Ma the-
orem [1] was carried over these systems and it was
stated that introduction of an arbitrary small amount
of defects of the “random local anisotropy” type leads
to the long-range order collapse and to occurrence of
an inhomogeneous state which hereafter we shall
name the Imry–Ma state [2, 3].

On the other hand, a demand of the disorder isot-
ropy was stated to be sufficient for the Imry–Ma state
realization [4].

It was shown in our preceding paper [5] that in the
case when anisotropic distribution of the defect-
induced random easy axes directions creates a global
anisotropy of the “easy axis” type in the order param-
eter space it is necessary for the long-range order
breakdown and the Imry–Ma state initiation that the
constant of such a global anisotropy should not exceed
its threshold value. Otherwise the long-range order
does not die and the Imry–Ma state does not arise.

A set of anisotropic distributions of easy axes is not
restricted to the case considered in [5] when a global
anisotropy results from the straightforward summa-
tion of the energies of separate defects interaction with
a homogeneous order parameter distribution. An
example of the distribution of easy axes differing from
the isotropic one and, to a first approximation, not
creating for a global anisotropy is given by the distribu-
tion wherein local anisotropy axes are with equal prob-
ability directed parallel to n mutually perpendicular
directions in the order parameter space which we
choose as the axes of the Cartesian coordinate system.

The goal of the present paper is to study the global
anisotropy arising to the second and successive orders
in the constant of local anisotropy created by a sepa-
rate defect, and derive the phase diagram of the system
in “concentration of defects of “random local anisot-
ropy” type vs. global anisotropy constant” variables.

2. ENERGY OF A SYSTEM 
OF CLASSICAL SPINS

The exchange-interaction energy of n-component
localized unit (a vector length can be included to cor-
responding interaction or field constants) spins 
comprising the simple cubic d-dimensional lattice,1 The article was translated by the authors.
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within the nearest neighbors approximation, has the
form

(1)

where J is the exchange interaction constant, the sum-
mation in i is performed over the whole spin lattice,
and the summation in δ is performed over the nearest
neighbors.

The energy of interaction between the spins and
“random local anisotropy” type defects is

(2)

Here K0 > 0 is the random anisotropy constant, the
summation is performed over defects randomly
located in the lattice sites, and ni is a unit vector pre-
scribing the random easy axis direction.

Turning to the continuous distribution of the order
parameter s(r), let introduce the inhomogeneous
exchange energy in the form [6]

(3)

where D = Jb2 – d,  is the interstitial distance, and
s⊥(r) is the order parameter component orthogonal to
its mean direction s0.

The energy of interaction between spins and
defects looks like

(4)

where

(5)

3. CUBIC TYPE ANISOTROPY

The anisotropy contribution to the volume energy
density linear in the anisotropy constant K0 is

(6)

where  is the dimensionless concentration of defects
(the number of defects per a unit cell), and the brack-
ets 〈 〉 denote averaging over the whole set of defects.

If the global anisotropy to the first order in  is
absent, that is subject to the condition  = const,
one should take account of the order parameter inho-
mogeneity induced by random anisotropy and calcu-
late the energy contribution quadratic (or higher
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power) of the constant . Actually the expansion is
performed in terms of a small parameter . We
neglect the longitudinal susceptibility of the system at
low temperatures, much smaller than the temperature
of magnetic ordering.

The presence of random anisotropy leads to a local
deviation of the order parameter from its mean value

and to the appearance of the component 
orthogonal to s0. The order parameter to the linear in

 approximation can be represented as

(7)

where . By substituting this expression to

Eq. (4), we obtain linear in  and quadratic in 
(as we shall see subsequently) summand to 

(8)

The quantity  fulfills the role of an
effective random field that acts on a spin. This field

component  orthogonal to  is

(9)

The Fourier component  is related to the
Fourier component of the effective random field

(10)

where  is the perpendicular susceptibility of the
spin system, and the quantity
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where V is the system volume, and N is the number of
elementary cells. Then one has
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the summation is performed over all  from the Brill-
ouin zone. Substitution of this expression into Eq. (8)
gives

(13)

By virtue of a random distribution of defects in the
coordinate space and a random choice of defect-
induced local anisotropy axes, a nonzero contribution
to  results from the summands with l = m. There-
fore Eq. (13) yields

(14)

If , then the second summand in the
right-hand side of Eq. (14) describes the global anisot-
ropy of the system.

For space dimensions 2 < d < 4, one can use the
susceptibility of the pure system for the quantity 

(15)

Going from summation over  to integration over the
Brillouin zone and introducing the notation

(16)

we get the quadratic in  contribution to volume
density of the interaction energy

(17)

For space dimensions 2 < d < 4, the quantity  has
no peculiarities at  = 0.

The quadratic in  contribution of the inhomoge-
neous exchange energy (3) to the volume energy den-
sity can be found in the similar way, by substituting the
expression for  into Eq. (3). Such a contribution
appears to be of the opposite sign and one half in mag-
nitude as to  given by Eq. (17). Therefore the
resulting volume density of the anisotropy energy takes
the form

(18)

k

⊥= − χ

× −

× − −

∑

∑

2
(2) 0

def

0 0 0 0

,

0 0

( )

( )[ ( )]( )

[ ( )]exp[ ( )].

l l l m

l m

m m m l

KW
N

i

k

k

s n n s s n s n

n s s n k r r

def W

⊥

⊥

= − χ −

⎡ ⎤= − χ −⎣ ⎦

∑ ∑

∑

2
(2) 2 20

def 0 0

2 2 4
0 0 0

( ) ( ) [1 ( ) ]

( ) ( ) ( ) .

l l

l

l l

KW
N

xK

k

k

k s n s n

k s n s n

( ) =1
0( ) constw s

( )⊥χ k

⊥ −χ = 2 2 1( ) ( ) .Jb kk

k

⊥ ⊥χ = χ
π∫� ( ),

(2 )

d

d
d k k

0K

⊥= − χ −�

(2) 2 2 4
def 0 0 0[ ( ) ( ) ].l lw xK s n s n

⊥χ�
k

0K

( )⊥ rs

( )2
defw

⊥χ= − −�

2
(2) 2 40

0 0[ ( ) ( ) ].
2 l l

x Kw s n s n

The summands containing higher powers of  can
be derived along similar lines.

The following value is taken as a global anisotropy
constant 

(19)

where  and  (i = 1, 2) are maximum and min-
imum values of  as a function of vector  direc-
tion.

4. TWO-DIMENSIONAL SPACE
A specific feature of two-dimensional models is the

absence of the long-range order in a pure system at
finite temperature, and so one has to anticipate the
existence of the long-range order induced by random
local anisotropy axes and solve a self-consistent prob-
lem [7].

Since under the influence of the effective field the
order parameter deviates from the easy direction to the
hard one, the expression for  takes the form

(20)

It can be easily seen that the presence of  in
Eq. (20) cuts the divergence of  at small values
which bring the main contribution to  for d = 2. As
the result we obtain
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The value of  can be found by solving the self-con-
sistency equation (19) after substituting the value of .
Since, to the first approximation, one has ,
the next approximation yields . Thus,
despite the fact that the summand  contains addi-
tional small parameter  compared to , its
value can exceed  in the region of low concen-
trations. An analysis of cubic and higher order terms in

 parameter demonstrates that at low concentra-
tions their concentration dependence is the same as
that of the term . Consequently, when considering
the global anisotropy concentration dependence, we
can restrict ourselves to the summands linear and qua-
dratic in .

5. AN EXAMPLE OF CUBIC ANISOTROPY
By way of illustration let us consider the case when

random easy axes of defects are with equal probability
directed collinearly to the Cartesian coordinate system
axes in the n-dimensional space of the order para-
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meter. In such a case , where  is

jth component of vector ; i, j = 1, 2, …, n;  is the

Kroneker symbol, and  = const. Similarly, one

finds , mean products of different compo-

nents of  equal zero, and  = .

Maximum value of the sum  equals 1 if vector

 is parallel to an axis of the Cartesian coordinate sys-
tem in the order parameter space, and its minimum
value is 1/n when this vector is directed along one of
the main diagonals of the given system. Since the sum-
mand containing the term  in the volume
energy density is plus in sign, in the equilibrium state
vector  is directed along one of the main diagonals of
the Cartesian coordinate system in the order parame-
ter space. A number of the order parameter compo-
nents (n = 2 in the X–Y model or n = 3 in the Heisen-
berg model) does not play a significant part, because
in contrast to the anisotropy linear in , the anisot-
ropy of the second and higher powers in  leads to
the occurrence of easy axes but not easy planes.

The global anisotropy constant has the form

(22)

For the space dimension 2 < d < 4 one has
 (for d = 3 this value is approximately

0.2) and  can be evaluated as

(23)

For d = 2, by using Eqs. (21), (22) and solving the
self-consistency equation (19), we obtain to the loga-
rithmic approximation

(24)

6. PHASE DIAGRAM OF THE SYSTEM
An anisotropic distribution of random easy axes of

defects induces anisotropy of both “easy axis” and
“easy plane” types. The Imry–Ma inhomogeneous
state is suppressed only by the “easy axis” type anisot-
ropy [5, 8]. That is why we detail the “easy plane” type
anisotropy case.

Gaining an answering the question if there arises in
the system the long-range order with vector  in the
easy plane or the Imry–Ma inhomogeneous state, one
should project all random vectors  onto the given m-
dimensional (n > m ≥ 2) hyperplane in the order-
parameter space and treat the problem at this hyper-
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plane. When the “easy plane” anisotropy arises, the
operation should be repeated. As a result we arrive at
three possible cases:

— Projections of random vectors  on the easy
plane equal zero. The system behavior therewith is
analogous to that of the pure system with the number
of the order parameter components corresponding to
the hyperplane dimensionality. In any event the
Imry–Ma inhomogeneous state does not occur.

— The “easy axis” anisotropy takes place in the
easy plane itself. Then the problem reduces to that
with the given anisotropy, but the number of the order
parameter components equals m.

— The distribution of vectors  projections on the
easy plane is perfectly isotropic. In this case the Imry–
Ma theorem is true.

In order to understand if the Imry–Ma inhomoge-
neous state is realized in a given system with the “easy
axis” effective anisotropy type, it is necessary that the
effective anisotropy constant be confronted with its
critical value, wherein the state in question is sup-
pressed [5, 8].

Indeed, to follow the space f luctuations of the easy
axis direction, the order parameter has to deviate from
the global easy axis direction. This leads to an increase
in the anisotropy energy by the value of the order of

. When such a growth is not compensated by
the gain in energy due to the order parameter align-
ment with the f luctuations of the easy axis direction,
the Imry–Ma inhomogeneous state becomes energet-
ically unfavorable, and the system goes back to the
state with the long-range order.

The requisite critical value was found in our earlier
papers [5, 8]:

(25)

For space dimensionality 2 < d < 4, the global
anisotropy induced by random defects is proportional
to defect concentration x, while the quantity  con-
tains a higher power of defect concentration. In partic-
ular, for d = 3, one has . It follows from this
that in the limit  the effective anisotropy arising
in any power to  is bound to exceed its critical value.

If d = 2, one has , that is, in the
region of small concentration the value of  also
exceeds its critical value .

Thus the Imry–Ma theorem ceases to be valid at
any arbitrarily small effective anisotropy of the “easy
axis” type induced by random local anisotropy axes of
defects. In the case of strongly anisotropic distribu-
tions of random easy axes creating the “easy axis” type
global anisotropy, the Imry–Ma state does not occur
in the whole range of defect concentrations x < 1.
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For slightly anisotropic distributions of random
local easy axes, the condition  imposes a
lower limit to the concentration of defects at which the
Imry–Ma inhomogeneous state takes place [5].

The phase diagram characteristic of the system is
displayed in Fig. 1.

7. CONCLUSIONS
An anisotropic distribution of defect-induced ran-

dom local easy axes directions initiates the global
anisotropy of either “easy axis” or “easy plane” type in
the order parameter space.

The Imry–Ma theorem stating that at space
dimensions d < 4 the introduction of an arbitrarily

<eff crK K

small concentration (italicized by the present authors)
of defects of the “random local anisotropy” type in a
system with continuous symmetry of the n-compo-
nent vector order parameter (O(n) model) leads to the
long-range order collapse and to the occurrence of a
disordered state, breaks down at the advent of the
“easy axis” anisotropy induced by the defects designed
initially for breaking down the long-range order.

In the case of slightly anisotropic distribution of
local easy axes, there exists a critical concentration of
defects, above which the Imry–Ma inhomogeneous
state can exist as an equilibrium one.

In the case of strongly anisotropic distribution of
local easy axes, the Imry–Ma inhomogeneous state is
completely suppressed, and the state with the long-
range ordering is realized at any defect concentration.
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