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Abstract—The magnetic permeability of alsifer was restored from the frequency dependences of the dielectric
and magnetic permeabilities of powder alsifer (AlSiFe alloy)–wax matrix composites. The permeabilities
were measured using the coaxial line technique within a frequency range of 0.05–20 GHz. The effect of the
concentration, shape, and size of powder particles on the microwave magnetic properties of composites was
considered. A good agreement between the measurement results and the Maxwell–Garnett formula general-
ized with consideration for the particle shape, the percolation threshold, and the skin-effect was obtained.
The found sizes of particles agreed with electron microscopy and granulometry data. Both the frequency and
the ferromagnetic resonance line figure of merit (FOM) for lamellar particles proved to be higher than for
spherical ones. Alsifer powders were shown to be promising fillers for radioabsorbing materials.
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1. INTRODUCTION
When designing different high-frequency (HF) and

superhigh-frequency (SHF) devices, it is necessary to
know the magnetic properties of the materials used.
Electromagnetic fields can penetrate into metals only
to the skin-layer depth, which attains several fractions
of a micron at superhigh frequencies, so the frequency
dependences of the magnetic permeability μ of metals
were estimated only from the properties of thin films
until now.

There were several known attempts to estimate the
SHF magnetic permeability of a metal from the losses
in metallic grids [1], the dependence of the resonator
FOM on the external magnetic field [2], and the losses
in the coaxial line of transmission from a studied
material [3]. In these works, different metals were
studied, and the obtained estimates of μ corresponded
to isolated widely spaced frequency points and poorly
agreed with each other. Some estimates of the HF per-
meability of a ferromagnetic from the measured mag-
netic permeability of a composite filled with dispersed
metal particles (two-phase powder filler–polymeric
binder mechanical mixture) appeared at a later date
due to the development of the theory of effective prop-
erties of inhomogeneous materials. Thus, the mag-
netic permeability of iron was estimated from the mea-
sured permeabilities of composites with spherical iron
particles in [4]. This estimate was obtained using the

Maxwell–Garnett formula [5]. As a result, it has been
found that the estimated magnetic permeability of a
filler depends on the concentration of inclusions in the
composite selected for the analysis of data. It is obvi-
ous that this result lies outside the limits of applicabil-
ity for the used mixing formula.

In the work [6], the intrinsic magnetic permeability
of alsifer particles was restored from the measured per-
meability of composites filled with particles of this
alloy using the Wiener approximation [7] applicable
only at a small difference between the properties of
mixture components.

There also exist some known works [8, 9], in which
similar estimates were obtained using the elective
medium theory (EMT or the generalized Bruggeman
formula for a symmetric mixture [10]). The correct-
ness of application was substantiated for the EMT for-
mula in these works only by the similarity of the mea-
sured concentration dependences of the static mag-
netic permeability of a composite to the curves
predicted by the selected mixing formula. However,
the obvious unfeasibility of the simultaneous descrip-
tion of the effective material parameters, dielectric
permeability εmix, and magnetic permeability μmix of a
composite with the selected mixing formula was
ignored in this case.

An obvious shortcoming of the known attempts to
determine the magnetic permeability of a metal from
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the permeability of composites with its dispersed par-
ticles is the arbitrary selection of a mixing formula and
the estimation of the formal parameters of this for-
mula instead of the properties of particles. For this
reason, the obtained results are determined not so
much by the properties of metals as by the form of a
used mixing formula. In this work, the mixing formula
simultaneously describes the dependences of εmix and
μmix on the composition of a composite, and its appli-
cability is confirmed by comparing its experimentally
determined parameters with the results of their esti-
mation by independent methods.

The precise and most correct approach to finding
the relation between the permeabilities of a heteroge-
neous system and its components is described by the
Bergmann–Milton theory [11] through the character-
istic spectral function related with the shape of inclu-
sion clusters. The determination of this function form
requires essential efforts for each new sample of mix-
tures, so the spectral function has not found practical
application yet.

The paper [12], which is most closely allied with this
work, is devoted to the derivation of a hybrid mixing for-
mula, which takes into account the dependence of the
shape distribution of ferromagnetic metal particles on
their concentration. This formula describes the struc-
tural transformation of a mixture from a matrix mixture
to a symmetric one upon attainment of the percolation
threshold. The applicability of the expression derived in
[12] is limited by near-spherical particles.

Below, the frequency dependence of the SHF mag-
netic permeability of a metal was estimated from the
results of measurements for the frequency depen-
dences of the effective material parameters (εmix and
μmix) of composites filled with a studied highly dis-
persed metal powder. The selected object of study was
alsifer (Al0.054Si0.096Fe0.85), which is a promising filler
for SHF composites. The dispersion dependences of
the material parameters of wax-based matrix mixtures
with a varied concentration of spherical or lamellar
alsifer particles of known size were measured. The
dependences of the material parameters of the studies
composites on the volumetric concentration of inclu-
sions p were described at each frequency using the
modified Odelevsky formula [13, 14], which takes into
account the shape of particles and the structural trans-
formation of a mixture upon attainment of the perco-
lation threshold. The Odelevsky formula more pre-
cisely takes into account the interaction between
metallic inclusions in a mixture than the Maxwell–
Garnett formula [5].

The applicability of the Odelevsky formula relating
εmix and μmix of a two-component mixture with the
corresponding parameters of filler particles εincl and
μincl and a matrix εhost and μhost = 1 is confirmed by the
absence of dependence between the experimentally
determined theory parameters (the inclusion shape
determining the depolarization coefficient N and the

critical concentration of inclusions pc) and the con-
trast between the matric and filler permeabilities
μincl/μhost. When the frequency f is changed, the inclu-
sion permeability μincl variates due to frequency dis-
persion within broad ranges, and obtained N and pc
remain constant. If the used mixing formula did not
correspond to the properties of the studied compos-
ites, there would be either a deviation between the cal-
culated and measured dependences εmix(p) and μmix(p)
or an appreciable dependence of the mixing formula
parameters on the contrast μincl/μhost and, correspond-
ingly, the frequency.

The measured set of the material parameters of a
composite μmix( f, p) and εmix( f, p) is used to determine
the parameters N and pc for each frequency f at differ-
ent inclusion concentrations p. The found parameters
are averaged over the frequency to decrease the contri-
bution of error in the measured material parameters of
mixtures. The calculated average parameters N and pc
and the measured values of μmix( f, p) are used to deter-
mine the frequency dependence of the effective mag-
netic permeability of a metal inclusion μincl( f ). Using
the known alloy conductivity and the inclusion sizes
(estimated microscopically and refined with the depo-
larization coefficient N), the skin-effect contribution
to μincl( f ) is excluded, and the sought frequency
dependence of the magnetic permeability of a metal
inclusion μmetal( f ) is calculated. The derived fre-
quency dependences μmetal( f ) for spherical and lamel-
lar particles are approximated to estimate the ferro-
magnetic resonance parameters by the Lorentz line
technique. Lamellar particles are approximated with
an oblate spheroid in the process of calculation.

2. TECHNIQUE OF EXPERIMENT
AND RESULTS

The alsifer powder used for the preparation of mix-
tures was obtained via melt aquaspraying. The granu-
lometric composition of powders was measured on an
Analyzette 22 laser analyzer. The initial powder is
spherical with the most probable particle diameter of
4.2 μm. The half-height granulometric density distri-
bution width is 2–8 μm.

Lamellar alsifer particles, whose electron micro-
photo is shown in Fig. 1, were obtained by grinding
spherical particles in a ball mill in an ethanol medium.
After grinding, the particles were classified on sieves,
and the fraction between the sieves with a mesh of
63- and 40-μm was selected for the preparation of
mixtures; in this case, the most probable equivalent
diameter of a lamella was nearly 50 μm. The micro-
scopically estimated thickness of particles was nearly
1 μm.

The composites for the manufacturing of speci-
mens were prepared by mixing together the calculated
portions of powder alsifer and melted wax. Mixing was
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performed under cooling until the solidification of
wax. Powder alsifer was with gasoline to improve dis-
tribution uniformity. The mass obtained after solidifi-
cation was pressed as 2–4-mm thick disks (to fit the
standard size of the coaxial line with a cross section of
7 × 3 mm). The volumetric metal concentration was
monitored by measuring the density of disks with an
error of 0.5–1%. The maximum volumetric content of
metal in thus obtained specimens was nearly 65 and
18% for spherical and lamellar particles, respectively.

To measure the frequency dependence of the effec-
tive material parameters, the disks were placed into a
feedthrough coaxial cell, where they were additionally
pressed to decrease the air gaps, which exist between a
specimen and the cell electrodes and invalidate the
measured dielectric permeability of a specimen. The
material parameters of mixture samples were mea-
sured by the transmission/reflection method [15]
within a frequency band of 0.05–20 GHz on an
Anritsu MS2028 vector network analyzer.

The dielectric permeability of mixture samples is
nearly constant throughout the entire studied fre-
quency range and may be considered as the static
dielectric permeability. The measured dependences of
the dielectric permeability of mixtures on the volu-
metric concentration εmix(p) of metal spheres and
lamellae are shown in Fig. 2.

The measured frequency dependence of the effec-
tive magnetic permeability of composites at different
volumetric concentrations of spherical particles is
shown in Fig. 3. Similar data for the composite filled
with lamellar particles are given in Fig. 4.

3. MODIFIED ODELEVSKY FORMULA. 
CONSTRAINTS FOR THE ESTIMATED 

PERMEABILITY OF FILLER PARTICLES

The Odelevsky formula for matrix mixtures
describes a broad range of transfer phenomena (gener-
alized conductivity [14]) in two-component matrix

Fig. 1. Electron microphoto of lamellar alsifer particles
obtained by grinding spherical particles in a ball mill.

50 µm

Fig. 2. Static dielectric permeability of mixtures filled with
lamellar (circles 1–5) and spherical (rhombs 6–11) alsifer
particles versus their volumetric concentration.

Fig. 3. Magnetic permeability (real (solid) and imaginary
(dashed) parts) of composites filled with spherical alsifer
particles versus frequency at a volumetric concentration of
spheres p = 0.124, 0.26, 0.36, 0.48, 0.58, 0.63 (curve num-
bers correspond to point numbers in Fig. 2).
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heterogeneous systems (mechanical mixtures).
According to the definition [14], a matrix mixture is
composed of a matrix (continuous medium) and a
filled (isolated inclusions spaced apart by matrix inter-
layers). In electrodynamics, the Odelevsky formula
representing a generalization of the Maxwell–Garnett
formula [5] (in the original paper [5], derivation was
performed only for spheres, and the correction for the
shape of inclusion was introduced for the first time in
[14]) is used to describe the electric and magnetic
polarization or, correspondingly, the dielectric and
magnetic permeabilities of a mixture εmix (Eq. (1)) and
μmix (Eq. (2)) as

(1)

(2)

Equations (1) and (2) differ from each other in that
the dielectric permeability of a composite εmix is deter-
mined not only by the filler permeability εincl, but also
by the matrix permeability εhost (for wax, εhost = 2.18).
In these equations, the subscripts mix, host, and incl
denote a mixture, a matrix, and inclusions, respec-
tively, N is the depolarization (demagnetization) coef-
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ficient depending on the inclusion shape [16], p is the
volumetric content of inclusions, and pc is the perco-
lation threshold (critical concentration of inclusions,
at which they form an infinite percolation channel
(cluster), and the structure of a mixture is transformed
from a matrix into a symmetric structure, in which
both components are equivalent and form mutually
penetrating channels).

The depolarization coefficient for oblate spheroids
(disks) at d/D < 1, where D is the greater diameter, and
d is the thickness, is given by the formula [17]

(3)

From Eq. (3) it follows that 0 < N ≤ 1/3.
In our calculations, lamellar alsifer particles were

approximated with uniformly shaped oblate spheroids.
For this reason, the polarizability of lamellae perpen-
dicular to the field is close to zero (the depolarization
coefficient is close to unity, i.e., N → 1), and the effec-
tive concentration of lamellae in the isotropic com-
posite (the method used to prepare the specimens
gives an isotropic mixture) is 2/3 of the concentration
determined from the density of specimens.

In Eqs. (1) and (2), N and pc are experimentally
determined parameters. Theoretically, the depolariza-
tion coefficient governed only by the inclusion shape
can be estimated by Eq. (3) from the microphotos of
filler particles, but the particle size and shape obtained
from them is only estimative. In addition, a
polydisperse mixture always contains clusters com-
posed at least of two neighbors in real practice even in
the case of ideally spherical inclusions, thus leading to
a certain decrease in the effective depolarization coef-
ficient of a particle even in a dilute mixture in compar-
ison with its theoretical estimate.

The critical concentration pc is a parameter charac-
terizing the interaction between inclusions. At pc →
∞, there is no interaction between filler particles. At
pc = 1, only dipole interaction between particles is
taken into account, and Eqs. (1) and (2) are reduced to
the Maxwell–Garnett formula [5]. In real practice,
0 < pc < 1, and the more appreciable is the distinction
of a filler particle from a sphere, the lower is pc. Let us
note that no direct relation pc ≈ N as in the symmetric
Bruggeman formula [10] is observed for the studied
specimens.

Equations (1) and (2) impose some constraints on
the possibility to determine the permeability of inclu-
sions from the measured permeability of a composite.
Thus, if the permeability of inclusions is high, the sec-
ond summand in the denominator of Eqs. (1) and (2)
is close to zero, and the permeability of a mixture is
determined only by the shape of filler particles and the

=
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Fig. 4. Magnetic permeability (real (solid) and imaginary
(dashed) parts) of mixtures filled with lamellar alsifer par-
ticles versus frequency at a volumetric concentration of
lamellae p = 0.023, 0.041, 0.077, 0.122, 0.157. (curve num-
bers correspond to point numbers in Fig. 2).
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interaction between them. Just a greater contrast
|εincl/εhost| ~ 109 between the filler and binder permea-
bilities enables the more precise estimation of N and pc
from the experimental data on the concentration
dependence of the dielectric permeability of a mixture
with metal inclusions εmix(p) in comparison with their
estimation from the concentration dependence of the
magnetic permeability. Due to a great contrast, Eq. (1)
is simplified as

(4)

In this case, the effective dielectric permeability of
a composite depends only on three factors, such as the
volumetric concentration p, the inclusion shape
described by the depolarization coefficient N, and the
inclusion interactions described by the multiplier (1 –
p/pc). The properties of inclusions do not almost pro-
duce any effect on the permeability of a mixture.

At a small contrast between the inclusion and
matrix permeabilities, e.g., at frequencies above the
ferromagnetic resonance frequency, where μincl ~ 1,
the first summand in the denominator of Eqs. (1) and
(2) becomes much lower than the second one and,
otherwise, the mixture permeability ceases to depend
on N and pc and, according to the Wiener formula [7],
is governed only by the permeability and concentra-
tion of inclusions, i.e., μmix ≈ 1 + p(μincl – 1).

Hence, the analysis of the concentration depen-
dences of the magnetic permeability of matrix mixtures
filled with magnetic powders provides the estimation of
the inclusion permeability μincl from the mixture per-
meability μmix only within a range depending on the
shape and concentration of filler particles. Differenti-
ating Eq. (2), let us determine the effect of the depolar-
ization coefficient N and the filler concentration p on
the inclusion permeability estimation error Δμincl at a
certain specimen permeability measurement error
Δμmix specified by experimental conditions:

(5)

From Eq. (5) it follows that the inclusion permea-
bility estimation error Δμincl is proportional to the dilu-
tion of a composite (Δμincl ~ 1/p), the squared depo-
larization coefficient N2, and the squared effective
magnetic permeability of inclusions .

Hence, the estimation of the magnetic permeabil-
ity of inclusions μincl by the Maxwell–Garnett model
(Eq. (2) at pc = 1) has a satisfactory precision only in
the region of frequencies, where μincl is rather low. To
determine higher μincl, it is necessary to measure the
permeability of composites with concentrations,
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which lie near the percolation threshold and can be
described by the Odelevsky formula (Eq. (2)), which
more correctly takes into account the interaction
between inclusions.

When measuring only the magnetic permeability
μmix, it is necessary to determine three parameters at
once from an array of experimental data, such as the
demagnetization coefficient N, the critical concentra-
tion pc, and the sought inclusion permeability μincl.
Such a measurement represents a complicated experi-
mental problem, which can be simplified only by
engaging some additional composite structure data.

In the paper [13], it is proposed to determine the
depolarization coefficient N from the dielectric per-
meability of a composite εmix (where the contrast of
permeabilities is high, i.e., εincl/εhost → 109) with a
minimum filler content. The magnetic permeability
μmix is also measured at contents p ≪ pc to eliminate
the effect of interaction between inclusions. The
method [13] imposes high requirements to the preci-
sion of measurements for εmix, as the depolarization
coefficient N is determined by the difference between
two close parameters, such as the matrix permeability
εhost and the mixture permeability εmix with a low filler
content.

In contrast to the work [13], the parameters N, pc,
and the inclusion permeability μincl as such are found
here simultaneously by minimizing the sum of the
mean-square deviation between the permeabilities
εmix(p) and μmix(p, f), which are calculated by Eqs. (2)
and (3) and obtained as a result of measurement.

In this case, experimental data are processed for
particles with the same shape over all the concentra-
tions at each frequency of measuring the material
parameters εmix(p) and μmix(p). In contrast to the
method [13], the reliable estimation of N and pc by this
technique requires composite permeability data from
as broad a range of concentrations as possible.

At specified measurement errors Δεmix and Δμmix,
the maximum inclusion permeability μincl estimated
by this technique is limited by the possibility to reliably
distinguish the dielectric and magnetic permeabilities
of a composite εmix/εhost – 1 and μmix – 1. Correspond-
ingly, as follows from Eq. (5), the closer is the concen-
tration of inclusions p to the percolation threshold pc,
the higher values of μincl can be determined.

4. PROCESSING OF EXPERIMENTAL DATA. 
CALCULATION OF THE MAGNETIC 

PERMEABILITY OF A PARTICLES
AND ITS METAL

The above-described approach and measured
εmix(p) and μmix(p, f ) were used to determine the model
parameters N and pc. These parameters found from the
data for different frequencies have close values. The
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obtained deviations of 1–5% are produced by the errors
in measuring the material parameters of composites.
The independence of the calculated parameters from
the contrast between component properties confirms
the applicability of the selected mixing model.

Black lines in Fig. 5 represent the frequency depen-
dence of the magnetic permeability μincl( f ) of spheri-
cal alsifer particles. Each black point in this depen-
dence was obtained by analyzing the corresponding
array of values for εmix(p) and μmix(p, f ) given in Figs. 2
(curve of spheres) and 3, respectively.

Similarly, a black line in Fig. 6 corresponds to the
frequency dependence obtained for the magnetic per-
meability μincl( f ) of lamellar alsifer particles by pro-
cessing the corresponding array of values for εmix(p)
and μmix(p, f ) shown in Fig. 2 (curve of disks) and 4,
respectively.

From the comparison of the dependences μincl( f )
for spherical and lamellar particles it can be seen that
the magnetic permeability of lamellar particles is
higher than for spherical ones at frequencies below
2 GHz probably because of the exclusion of the inner
volume of a spherical particle due to the skin-effect
(according to microscopy data, the thickness of lamel-
lae is nearly 1 μm, and the average diameter of spheres
is 4.2 μm). At a frequency of 100 MHz (the lower
boundary of the experimental frequency band), the
magnetic permeability of both inclusions does not
attain saturation and is far from its static value.

At an alsifer conductivity σincl ≈ 1.6 × 107 Ω–1 m–1

and a thickness (minimum size) d of inclusions, it is
possible to exclude the skin-effect contribution from
the above estimated magnetic permeability of inclu-
sions μincl( f ) at each frequency point and calculate the
frequency dependence of the magnetic permeability of
the inclusion composing alloy μmetal( f ). The correc-
tion for the skin-effect contribution is applied for
spheres and an infinite plane [17], and the magnetic
permeability of an inclusion is related with the mag-
netic permeability of the inclusion material μincl =
μmetal f(θ) via the multiplier f(θ), which is a function of
the optical thickness θ of an inclusion, i.e.,

(6)

This function is f(θ) =  for the plane and

f(θ) = 2  for a spherical inclusion.

The frequency dependence of the alsifer magnetic
permeability μmetal( f ) for spheres with the skin-effect
contribution, which was numerically excluded from
μincl( f ), is shown in Fig. 5 as dark-grey lines. Similarly,
the frequency dependence of μmetal( f ) for lamellar par-
ticles is plotted in Fig. 6. Let us note that the error in
the lamella thickness has an appreciable effect on the
calculated magnetic losses at low frequencies: the
overestimation of this thickness leads to the appear-
ance of negative values for the imaginary part of μmetal.

θ = π εμ2 .fd

θ
θ

tan( )

θ − θ
θ − θ + θ2

tan( )
( 1) tan( )

Fig. 5. Magnetic permeability (real (solid) and imaginary
(dashed) parts) of spherical particles μincl (black lines) and
their metal μmetal (dark-grey lines, the skin-effect contri-
bution was excluded from the particle permeability μincl in
the case of μmetal) versus frequency and approximation of
the alsifer magnetic permeability μmetal with the Lorentz
line (light-grey lines).

Fig. 6. Magnetic permeability (real (solid) and imaginary
(dashed) parts) of lamellar particles μincl (black lines) and
their metal μmetal (dark-grey lines, the skin-effect contri-
bution was excluded from the particle permeability μincl in
the case of μmetal) versus frequency and approximation of
the alsifer magnetic permeability μmetal with the Lorentz
line (light-grey lines).
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Thus, the thickness obtained for lamellar particles
from the analysis of electron microphotos is close to
1 μm, and the average diameter of a lamella is nearly
50 μm. At a depolarization coefficient N = 0.00854
found as described above, the ratio of the thickness of
an equivalent ellipsoid (disk) to its diameter is d/D ≈
0.0011. For the imaginary part of the magnetic perme-
ability  (dark-grey dashed line in Fig. 6) to be
close to zero at frequencies below 500 MHz, the thick-
ness of a lamella must be nearly d ≈ 0.65 μm. Whence,
the equivalent diameter of a lamella at d/D ≈ 0.0011 is
D ≈ 58 μm, which is in good agreement with the mesh
size of a sieve separator (mesh side, 63 μm).

Let us note that the equivalent diameter of a
lamella exceed 100 μm for the processing of experi-
mental data (Figs. 2–4) by the Maxwell–Garnett for-
mula, being much greater than a sieve mesh, and the
deviations of the calculated mixture permeability
μmix( f ) from its value measured at high and low filler
contents exceed 15%.

A decrease in the real part of the magnetic perme-
ability  of the inclusion material with decreasing
frequency at frequencies below ~300 MHz in Figs. 5
and 6 seems to be due to the limitations of the method
used to estimate the magnetic permeability of metal.
On the one hand, the measurement error for μmix( f )
grows with decreasing frequency due to a small optical
thickness of the studied specimens. On the other
hand, the magnetic permeability of inclusions μincl( f )
grows due to frequency dispersion and a decrease in
the skin-effect contribution, and the error determined
by inequality (5) appears. The accuracy of measuring
the magnetic permeability of metal at frequencies
below 500 MHz may be improved with the use of more
precise methods for the measurement of μmix( f ) (at
megahertz frequencies) and specimens with a higher
content of inclusions. However, a further increase in
the filler content proves to be problematic for the used
specimen manufacturing technology, as specimens
become brittle and break down during their removal
from a press mold.

To estimate the magnetic permeability of alsifer at
frequencies below 500 MHz, the obtained frequency
dependences of the magnetic permeability of alsifer
were approximated with the resonance (Lorentz)
curve

(7)

In this equation, μstatic is the static magnetic perme-
ability of metal, F is the ferromagnetic resonance fre-
quency, Γ is the attenuation coefficient, and f is the
frequency, at which μmetal is calculated.

μmetal
''

μmetal
'

( )
μ −μ = +

Γ− +

static
metal 2

11 .
1 f fi

F F

In Figs. 5 and 6, the calculated frequency depen-
dences of μmetal are dark-grey, and their approxima-
tions are presented as light-grey lines.

From these figures it can be seen that the attenua-
tion coefficient for the approximating Lorentz func-
tions is rather high. The quantitative comparison of
the resonance frequencies F is, however, problematic
here, so it is necessary to consider the absorption max-
imum frequency. The static magnetic permeabilities
obtained for spherical and lamellar alsifer particles are
close to 300. The alsifer absorption maximum in
lamellar particles corresponds to a frequency of nearly
3 GHz, being appreciably lower for spherical particles,
i.e., nearly 1 GHz.

The shift of the alsifer absorption maximum for
lamellar particles towards higher frequencies in com-
parison with the absorption maximum of the same
alloy in spherical particles may be due to the depen-
dence of ferromagnetic resonance conditions on the
shape of a particle. Thus, when one dimension of a
uniformly magnetized ferromagnetic is much smaller
than the others (a film or a plane), the ferromagnetic
resonance frequency will be governed not only by the
field of anisotropy, but also by the difference between
the demagnetization coefficients. In this case, the
static permeability proves to be close to its value
observed in a body with close dimensions in all direc-
tions (in a sphere). In other words, the parameters of
the frequency dependence of the magnetic permeabil-
ity of a ferromagnetic are determined not only by its
composition, but also by the shape of a body, in which
ferromagnetic resonance is observed.

5. CONCLUSIONS
It has been shown that the used Odelevsky model is

in good agreement with the measured frequency and
concentration dependences of the material parameters
of composites. The applicability of Eq. (2) is con-
firmed by that the parameters N and pc remain con-
stant with a change in the contrast between the perme-
abilities of mixture components within broad ranges,
and the equivalent lamella diameter D calculated from
the demagnetization coefficient N and the skin-layer
thickness (Eq. (6)) corresponds to the mesh size of a
sieve separator.

The processing of experimental data by the Max-
well–Garnett formula leads to that the deviation
between the calculated and measured permeabilities of
a composite lies outside experimental error limits.
Moreover, the lamella diameter D (calculated at pc =
1) is almost two times greater than the sieve mesh size
(100 and 63 μm, respectively).

An obvious shortcoming of matrix models is the
presentation of a composite as a regular structure sim-
ilar to a crystal lattice. It is assumed that there are no
local concentration f luctuations, and the interaction
characterized by the parameters N and pc between all
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inclusions is equivalent. In real practice, the distribu-
tion of inclusions by their effective shape takes place
and is described by the Bergman–Milton characteris-
tic geometric function [11, 18], and the summand (1 –
p/pc)N in the denominator of Eqs. (3) and (4) is only a
refined approximation in comparison with (1 – p)N in
the Maxwell–Garnett formula.

The accepted approximations lead to small devia-
tions (3–5%) of the mixture permeability μmix( f ) cal-
culated from the found parameters N, pc, and μincl( f )
from its measured value at minimum and maximum
filler contents (p → 0 and p → pc, respectively). A sim-
ilarly small deviation of the permeability calculated by
the Odelevsky model from its measured value was
obtained when studying the composites with iron
powders [13].

Hence, the Odelevsky formula modified with
allowance for the percolation threshold more precisely
describes the properties of matrix mixtures in compar-
ison with the Maxwell–Garnett formula. The found
parameters of the mixing formula are confirmed by
the results of independent measurements.

The broader is the describable range of filler con-
tents and contrasts between the permeabilities of mix-
ture components for a selected mixing formula, the
lower is the error of restoring the permeability of a par-
ticle from the permeability of mixtures.

In comparison with the processing of measurement
results for the magnetic permeability μmix( f, p) alone,
the simultaneous processing of the frequency and con-
centration dependences of both material parameters
εmix( f, p) and μmix( f, p) of a mixture provides the more
precise estimation of the mixing formula parameters
and, correspondingly, the more accurate restoration of
the frequency dependence of the alsifer permeability
μmetal( f ) in the region of high μmetal.

An appreciable increase in the error of estimating
μmetal at frequencies below ~300 MHz is due to both an
increase in the error of measuring the material param-
eters of a composite by the transmission/reflection
method and a nonlinear relation between the particle
and mixture permeabilities (Eq. (2)). The precision of
estimating μmetal can be improved with the use of a
more precise method of measuring the material
parameters and specimens with a higher filler content.

In principle, the precision of estimating high values
of μmetal can be improved by decreasing the effective
magnetic permeability of inclusions μincl and filling
mixtures with particles of greater thickness d. In this
case, the parameter μincl will be lower due to the skin-
effect and, correspondingly, the error of its measure-
ment for the same shape and concentration of inclu-
sions will be smaller. However, the accuracy of mea-
suring the effective permeability of inclusions is
increased due to the screening of a major part of the
inner particle volume, and the skin-effect contribu-
tion can precisely be taken into account only for a

sphere or an infinite plane. It seems that the growth of
particles in size will lead only to that the error of esti-
mating μincl will be replaced by the skin-effect correc-
tion error.

The measured frequency dependences of the
dielectric and magnetic permeabilities of mixtures
indicate that the studied alsifer particles may serve as a
filler for electromagnetic radiation absorbents and
materials providing electromagnetic compatibility at
frequencies below 1 GHz, as it superior to carbonyl
iron in magnetic losses. At the same time, the restored
magnetic spectra of the Al0.054Si0.096Fe0.85 alloy indi-
cate that the obtained values of the magnetic permea-
bility of a composite μmix( f ) are limited first of all by
the skin-effect and can be appreciably elevated by
increasing the dispersion of particles.
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