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Abstract—We establish the dependence of the electron binding energy in a separate isolated Wigner–Seitz cell
of the metal crystal lattice on the average number of electrons located in this cell. The calculation is made
using the modified Hellmann–Feynman theorem, which allows relating the eigenvalue of the steady-state
Hamiltonian to the variation in its parameters that do not affect the degree of freedom of a system. As one of
these parameters, we choose the average number of electrons in the cell. According to the calculated data,
removal of 10–30% of electrons in monovalent metals leads to the crystal lattice fracture. The results obtained
using the Hellmann–Feynman theorem are directly compared with the data of the jellium model.
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1. INTRODUCTION
Metals retain their properties and shape owing to

the dynamic equilibrium between the forces of elec-
trostatic interaction of ions with each other and with
electrons. This equilibrium is determined by the elec-
troneutrality of the ion–electrons system both in an
individual cell and in the entire metal volume. It is the
conduction electrons that work as a “glue” ensuring
the lattice stability and determine the individual phys-
icochemical properties of metals.

The lattice ions, in their turn, keep electrons within
the boundaries of a metal and prevent them from leav-
ing it [1].

The most important parameters characterizing the
properties of metals are the total energy, binding
energy of conduction electrons, cell size, and average
number of electrons in the cell. The direct calculation
of the dependence of the binding energy on the aver-
age number of electrons in the cell is quite laborious
and the result is predetermined by a chosen interaction
model. The use of the Hellmann–Feynman theorem
[2] makes it possible to obtain the results in a simpler
way, which is nearly independent of the greater part of
the proposed model. This theorem was used by Feyn-
man [2] to calculate the interaction energy and forces
in a molecule at its any configuration.

If the Hamiltonian, which is not explicitly time-
dependent, includes parameters that do not determine
the degrees of freedom of such a system, then these
parameters will affect the energy eigenvalues and
eigenfunctions of the system. The Feynman theorem
allows establishing the dependence of the Hamilto-

nian eigenvalue on the variation in a separate parame-
ter. Basing on this theorem, the intermolecular inter-
action forces were calculated as a function of the inter-
nuclear distance at the much smaller calculation
volume [2].

In this study, we choose parameter λ of the average
number of electrons in the metal cell. This parameter
determines the binding energy and, consequently, sta-
bility of metals under normal conditions.

2. MAIN APPROXIMATIONS

We consider the problem on finding the depen-
dence of the binding energy of conduction electrons
located in a separate isolated Wigner–Seitz cell on
their average number λ for Li, Na, K, V, Cu, Rb, Ag,
and Au metals.

One electron with mass me is assumed to carry ele-
mentary charge e. If under normal conditions the neu-
tral Wigner–Seitz cell contains n0 conduction elec-
trons, then after the removal of a part of electrons q =
n/n0, the remaining number of electrons will be λ =
1 – q and the average mass and charge of the remain-
ing electrons will be me → λme and e → λe, respec-
tively. Further, the atomic units are used, but Bohr
radius aB chosen as a length scale and the Rydberg
constant determining the energy unit are assumed to
be independent of the variation in electron parameters
(charge and mass). In the calculations, the contribu-
tions of the volume and correlation energies are
ignored.
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The main properties of a metal are determined by
the electrons whose energy slightly differs from the
Fermi energy EF

(1)

Upon electron density variation form n0 to n (n0 →
n = λn0), the Fermi energy changes by

(2)
and the corresponding momentum pF changes by

(3)
The main equation in quantum mechanics is the

Schrödinger equation. In writing this equation, the
classical correlation between the energy and momen-
tum of an individual microparticle is determined by
the operator form using the formal transformations [3]

(4)

Analogously to relations (4), the momentum oper-
ator for the nonintegral number of momentum opera-
tor particles can be written in the form

(5)

The electromagnetic interaction considered below
requires the replacements m → λm and e → λe; then,
the replacement for the potential energy is U → λU.

Approximation of the Wigner–Seitz cell by a
sphere with radius rs makes it possible to write the
spherically symmetric Schrödinger equation with
regard to the conditions at the cell boundaries in the
form

(6)

Solving Eq. (6), we can find the dependence of the
binding energy of conduction electrons on their aver-
age number in the Wigner–Seitz cell. The results of
the calculations for the model in which the potential
energy was approximated by the potential energy of a
uniformly charged sphere [4] were reported in [5]. The
calculation appeared fairly complex and their results
significantly dependent on the chosen approximation
of the potential energy in (6).

There is the relation that establishes the depen-
dence of the eigenvalue and wave function of the
Hamiltonian on this parameter. This relation is called
the Hellmann–Feynman theorem [2, 6] and has the
form

(7)

Note that there is the difference between the classi-
cal formulation of the Feynman theorem [7] and its
direct use in this study. This difference is caused by the
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wave function normalization condition. For Hamilto-
nian Hλ depending on parameter λ, the energy and
wave function are determined by solving the
Schrödinger equation

(8)
and the wave function meets the normalization condi-
tion dependent on the λ value

(9)

whereas the wave function of the electron from the
neutral cell satisfies the isolation condition and the
last term in the right-hand side of Eq. (7) is usually
absent. The total electron energy is usually determined
from the ordinary relation

(10)

where, according to (5), the dependence of the Ham-
iltonian on parameter λ is the nonuniform function of
this parameter:

(11)
here, T1 and U1 are the operators of the kinetic and
potential energies for the neutral cell. Substitution of
(11) in (7) with regard to Eqs. (9) and (10) leads to the
first-order linear equation for the bottom of the con-
duction band

(12)

Expression (12) is exact and, for direct calcula-
tions, we have to choose a model determining the
potential energy U of the interaction between conduc-
tion electrons and the ionic core and to establish the
dependence of wave function ψλ on parameter λ.

3. WAVE FUNCTION AND ENERGY 
OF ELECTRONS UNDER THEIR DEFICIENCY

The state of conduction electrons in the Wigner–
Seitz cell is determined by a set of wave functions ψ1,
where the parameter λ = 1 corresponds to the condi-
tion of its electroneutrality. As electrons remove from
the cell (λ <1), the interaction energy changes, which
leads to the change in the wave function ψ1 > ψλ. To
calculate the energy using Eq. (12), we need in the
information about the wave function under electron
deficiency. The available models describe the state of
an electron in the neutral cell. To find the wave func-
tion of electrons under their deficiency, we write it in
the form of superposition of the wave functions of the
neutral cell

(13)

where α is the set of quantum numbers characterizing
the state of electrons in a separate neutral cell. Limit-
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ing the consideration to the first term in formula (13),
we write the functional

(14)

under condition (9). To find the best approximation of
the wave function, it is necessary to minimize func-
tional (14), which can be done using the method of
Lagrange multipliers μ

(15)

i.e.,

(16)

Substitution of (15) in formulas (16) allows finding
the correlation between the wave functions in the form

(17)

Multiplying the left- and right-hand parts of
formulas (17) by each other and integrating over the
cell volume, we obtain, with regard to normalization
conditions (9), the relation between factors μ and λ

(18)

Finally, in the first approximation, the relation
between the wave functions of conduction electrons
corresponding to the neutral cell and cell with electron
deficiency q = 1 – λ is

(19)
Thus, representation (19) corresponds to the condi-
tion of the best approximation of wave functions with-
out using a special model of interaction of electrons
with the atomic core. Relation (19) makes it possible
to estimate the parameters of metals under electron
deficiency based on the information about the param-
eters of the neutral cell.

We use this relation to estimate the electron energy.
In the absence of electron deficiency, the electron
energy is determined by minimizing the total energy in
the neutral cell (λ = 1)

(20)

where E1 = Eλ = 1 is the energy of the bottom of con-
duction band of the neutral Wigner–Seitz cell. Upon
removal of the relative average number λ of electrons
from the cell, the volume of the latter increases in
accordance with the relations

(21)

where nλ is the number of electrons in the unit volume
of the charged and neutral (n1 = nλ = 1) cells. Excluding
the electron potential energy from formula (12) using
relations (20) for the neutral cell and taking into
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account its volume variation (21), we arrive at the
equation for calculating the energy Eλ of the bottom of
the conduction band as a function of the relative num-
ber of electrons in a separate cell

(22)

Equation (22) allows us to relate the energy parame-
ters of the charged cell (λ < 1) to the energy parameters
of the neutral cell (λ = 1).

The use of the Hellmann–Feynman theorem for
estimating the parameters of the charged cell allows
not only simplifying the calculations, but also extract-
ing those significantly affecting the binding energy of
a conduction electron. In particular, instead of the
numerical solution of the second-order differential
equation with the boundary condition depending on
the relative number of electrons λ in the cell [5], the
theorem makes it possible to analytically solve Eq. (22)
via the average value of its kinetic energy in the neutral
cell.

4. COMPARISON OF THE CALCULATED DATA 
OBTAINED BY SOLVING THE SCHRÖDINGER 
EQUATION AND USING THE HELLMANN–

FEYNMAN THEOREM

To initially estimate the average kinetic energy in
formula (22), we use the results of the free electron
model, where the main properties of elements are
determined by electrons with energies similar to the
Fermi energy EF [8]

(23)

Substitution of (23) to formula (22) yields the simple
equation for the bottom of the conduction band

(24)

with the boundary condition

(25)

The energy E1 of the bottom of the conduction
band cannot be directly experimentally determined in
the neutral cell and is estimated from its relation with
the energies directly determined in experiments

(26)

where Ea is the energy of the lowest state of the metal
atom and Δ   is the atomization enthalpy. As the aver-
age number of electrons in a separate cell increases,
the volume of the latter grows, the energy of the bot-

{ }
{ }

λ
λ

λ
λ

− = − + ψ ψ τ
λ λ

= − = − +
λ λ

∫1 1 1 1 14/3

1 4/3

1 *1
3

11 .
3

dE E E T d
d

dE E E T
d

= F
1

3 .
5

T E

{ }λ
λ− = + +

λ λ
F

1 14/3
3 11
5 3

dE E E E
d

λ= =1 1.E E

= Δ +*1 ,aE E

*



1692

PHYSICS OF THE SOLID STATE  Vol. 59  No. 9  2017

EROKHIN, KALASHNIKOV

tom of the conduction band increases, and the metal
loses its stability under the condition

(27)

i.e., the metal decays into separate noninteracting
atoms. This process is accompanied by the energy

=1 ,aE E

release called the Coulomb explosion. As was shown
in [9], there is the critical number of electrons qc after
removal of which the metal loses its stability. In this
case, the total energy of an electron in the cell becomes
comparable with energy (27) of an individual atom.
Figure 1 shows the calculated dependence of relative
number of electrons qc, after removal of which some
metals lose their stability in accordance with (27), on
their atomic number Z. For comparison, the figure
shows the results of analogous calculations obtained
using the jellium model [5] by solving directly the
Schrödinger equation with the corresponding edge
condition at the Wigner–Seitz cell boundary.

Based on the above-described approach, we calcu-
lated the dependence of the electron atomization
enthalpy Δ  on the average number of removed
electrons q = 1 – λ

(28)
Figures 2 and 3 show the calculated dependences of
enthalpy (28) in Ry units on the average electron defi-
ciency q under the assumption of the isolated cell. It
can be seen that metals can be conventionally divided
in two groups. The first group involves unstable metals
with a relatively low qc value (Fig. 2) and the second
group, the more stable metals with a somewhat higher
critical value qc (Fig. 3). Although the average cell
radius rs is approximately the same for all metals
(3.6 dB), all the group-I elements have the body-cen-
tered lattice with the low energy of the bottom of the
conduction band (E1 ~ 0.43 Ry). The energy of the
bottom of the conduction band for Group II metals
with the face-centered lattice, except for V, is twice as

λ*

λ λΔ ≈ −* .aE E

Fig. 1. Atomic number dependence of the critical relative
number of removed electrons corresponding to the break
of stability of metals. (1) Calculation made in this study
and (2) calculation reported in [5].

Fig. 2. Enthalpy of atomization of Group I metals.
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Fig. 3. Enthalpy of atomization of Group II metals.
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much as for Group I metals (E1 ~ 0.85 Ry), which,
according to (26), leads to the higher stability of a
metal. To break the stability of these metals, it is nec-
essary to remove the larger (by a factor of about 1.8)
number of electrons.

5. DISCUSSION
The main approximation of this model is relation

(19) of the electron wave functions in the charged and
neutral cells. To check this relation, we solved the

problem of finding the wave functions of the neutral
and charged cells using the jellium model. The calcu-
lated data for two metals are illustrated in Figs. 4a and
4b, which present the relations for the radial wave
functions of an electron δψ = ψλ/ψ1 of the charged
and neutral cells for Na (Fig. 4a) and Cu (Fig. 4b). The
solid line shows the calculation from [5]. The dashed
horizontal line shows the parameter   for this metal,
which corresponds to approximation (19) of this study.
The vertical line shows the radii of spheres approxi-
mating the charged Wigner–Seitz cells for the corre-
sponding metals.

As can be seen in Fig. 4a, approximation (19) is
valid for Na, while for Cu the situation is essentially
different (Fig. 4b).

The difference between the wave functions is
reflected on the dependence of the atomization
enthalpy on the average number of electrons in the
cell. Figure 5 presents the calculated ratios between
the enthalpies of the charged and neutral cells

(29)

on the average number of removed electrons. It can be
seen in Fig. 5 that the significant differences between
the wave functions in Figs. 4a and 4b do not lead to the
large difference between the dependences of the atom-
ization enthalpies for different models. This confirms
the possibility of using approximation (19) relating the

λ

λ

λ=

Δη =
Δ
*

* 1

Fig. 4. Ratio δψ of the radial wave functions of an electron
for the charged and neutral cells. Calculated data for (a)
Na and (b) Cu.

(a)

(b) Fig. 5. Dependence of relative atomization enthalpy (29)
of Na and Cu on the relative number of removed electrons.
Open symbols show the calculation using the jellium
model [5] and closed symbols, the calculation made in this
study.
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wave functions of electrons of the neutral and charged
cells.

6. CONCLUSIONS
Based on the Hellmann–Feynman theorem for an

isolated Wigner–Seitz cell, we calculated the depen-
dence of the binding energy on the electron deficiency.
The results obtained agree well with the data of the jel-
lium model.

It should be taken into account that if the wave
functions of electrons are known exactly, the Hell-
mann–Feynman theorem makes it possible to accu-
rately calculate the dependence of the Hamiltonian
eigenvalue on the chosen parameter. The proposed
replacement of wave functions (19) under electron
deficiency for the wave function without the electron
deficiency led to the change in the Hellmann–Feyn-
man theorem, which allowed us to take into account
the variations caused by a decrease in the electron
density and an increase in the cell volume. This
approach allows performing the calculations using not
only the free electron approximation, but also other
models with the wave functions that can differ from
plane waves.

It can be seen in Fig. 1 that the values of parameter
qc for metals from Li to Au lie in the range of qc =
0.07–0.27. According to the results obtained, after
removal of 10–11% of electrons on average from a sep-
arate isolated cell, the metal atomization accompanied
by the energy release occurs [10]. Although the critical
electron deficiency estimations obtained in this study
agree well with the estimations made in the previous
works using other approaches, note that the error of
replacement of the electron wave functions in the neu-
tral and charged cells cannot be estimated within the
investigated approximation. However, the comparison
with the quantum-mechanical calculations showed
that for the cubic syngony elements with the body-
centered lattices, the approximation of the Wigner–
Seitz cell by a sphere and replacement of wave func-
tions (19) are quite satisfactory approximations. For
metals with the closer packed face-centered lattices,

the approximations used work worse. The choice of
wave functions does not significantly affect the esti-
mated critical number of removed electrons.

The calculations showed that the approximation of
the curves in Figs. 2 and 3 by the linear dependences
corresponding to the small deficiencies q agrees with
the results obtained by solving the Schrödinger equa-
tions [5]. This allows estimating the critical number of
removed electrons qc using the intermediate q values.

Despite the assumptions used, the Hellmann–
Feynman theorem allows the quite satisfactory esti-
mations to be obtained by simple calculations. In view
of the aforementioned, it is interesting to experimen-
tally verify the estimations by studying the inertial
explosions of metals under their interaction with a bar-
rier [11].
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