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Abstract—The Green’s function method for hexagonal crystals within the Lifshitz–Rosenzweig (1947) and
Kröner (1953) approaches has been used to obtain analytical expressions for the energy of elastic interaction
of radiation-induced point defects with dislocation loops of three types: the basal edge dislocation loop (c-
loop), the basal shear dislocation loop, and the edge a-loop (bedding plane { }, Burgers vector bD =
1/3〈 〉). In the case of the basal edge dislocation loop, a similar expression has been obtained inde-
pendently by solving the equilibrium equations using the Elliott method. A numerical comparison of the
derived expressions for zirconium has demonstrated a complete identity of the results obtained within the
approaches considered in this study.
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1. INTRODUCTION
One of the reasons for the evolution of the micro-

structure in a crystal under irradiation is associated
with diffusion f luxes of radiation-induced point
defects onto structural elements (pores, dislocations,
precipitates of new phases, etc.), which serve as sinks
for point defects. The diffusion fluxes themselves are
substantially dependent on the gradient of the energy
of elastic interaction (drift f low) of point defects with
the stress field induced by a sink. Dislocation loops, as
a rule, are the first observed extended elements of the
microstructure of the material under irradiation.
Therefore, the calculation of their elastic fields and the
corresponding energy of interaction with point defects
is a very important problem in the theory of radiation
materials science.

If we know the fictitious distribution of body forces
, which, in an elastic medium, creates the same

stresses as a real source S, then the energy of interac-
tion between two systems of internal stresses S(uS, ,

) and T(uT, , ), according to Eshelby [1], can
be represented as the integral of the following form:

(1)

which is taken over the region containing only the
source of the system of stresses S. Let this system be
determined by a point defect, which, in the theory of

elasticity, is described by the volume distribution of
dipole forces without a momentum,

(2)

and the system T be determined by a dislocation loop
(T = D). Then, we have

(3)

and, in the case of a dilatation center, Aij = Pδij, we can
write

(4)

where P is the power of the dilatation center; the frame
of reference in this case is related to the dislocation,
and r is the coordinate of the point of location of the
point defect. In fact, there are two methods for the cal-
culation of an elastic field of a dislocation loop . The
first method is to solve the equilibrium equations in
terms of displacements with the appropriate boundary
conditions. In the case of a hexagonal crystal (axial
symmetry), the calculation is performed using the
Hankel transform [2]. The second method is to use the
tensor Green’s function Gij of the equilibrium equa-
tions of the elastic medium under consideration, which
makes it possible to calculate the displacements caused
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by a dislocation of any form in any anisotropic elastic
medium according to the classical formula [3, 4]:

(5)

The notation used in formula (5) is as follows: Cjklm
is the tensor of the elastic moduli of the medium sim-
ulating the crystal,  is the mth component of the
Burgers vector of the dislocation,  is the lth compo-
nent of the normal vector to an arbitrary surface SD
lying on the dislocation line, r is the coordinate of the
point of observation, and r' is the coordinate of the
point on the surface SD. In the literature, there are two
versions of the analytical calculation of the tensor
Green’s function, namely, within the Lifshitz–
Rosenzweig approach (1947) [5] and using the Kröner
method (1953) [6] with the correction for the coeffi-
cient [7]. The first approach is valid for any
unbounded elastic anisotropic medium. In particular,
the Lifshitz–Rosenzweig method, as applied to cubic
and hexagonal crystals, has been described in suffi-
cient detail in our previous studies [8, 9]. The second
method is applicable only to hexagonal crystals.

In order to be able to use all the appropriate analyt-
ical methods and to compare the obtained results, in
this study, we considered crystals of the hexagonal sys-
tem (the numerical comparison was performed for zir-
conium). The point defect was simulated by a dilata-
tion center. Therefore, for dislocation loops of differ-
ent types, we calculated only the quantity Sp (r)
according to formula (4). This paper is organized as
follows. In Sections 2 and 3, we considered basal
vacancy dislocation loops with a pure edge component
and a pure shear component of the Burgers vector.
Since the Burgers vector inclined to the basal plane
can always be decomposed into these components, the
analytical result can actually be obtained for any basal
dislocation loop. Despite the large differences in
appearance of the formulas obtained by different
methods, the numerical estimates for zirconium
demonstrated their complete identity. In Section 4, we
considered a more complex object, namely, a disloca-
tion loop lying in the { } plane. In particular, for
zirconium, it is the so-called a-loop with the Burgers
vector b = 1/3〈 〉. Here, only the tensor Green’s
function method works fairly well. In this case, again,
the numerical estimates obtained for zirconium both
within the Lifshitz–Rosenzweig and Kröner
approaches showed their complete identity. It should
be noted that, in connection with the interpretation of
experimentally observed contrasts of dislocation
loops, the problems of the calculation of their elastic
fields was repeatedly solved in the past (see, for exam-
ple, [10, 11]). However, usually, the results were pre-
sented in the form of fairly cumbersome formulas for
elastic stress components. In this study, we are inter-
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ested only in the quantity Sp (r). Consequently, all
the formulas presented in this paper are not only orig-
inal, but also, as turned out, are much simpler mathe-
matically.

2. ELASTIC FIELD OF A PRISMATIC 
DISLOCATION LOOP LYING IN THE BASAL 

PLANE OF THE HEXAGONAL CRYSTAL

Let us consider a circular vacancy dislocation loop
with a radius R, lying in the plane z = 0 (basal plane)
of the cylindrical coordinate system (r, ϕ, z), the Burg-
ers vector of which is perpendicular to the plane of the
loop and has only the z-component (0, 0, bD). The
normal vector to the plane of the loop coincides with
the positive direction of the “z” axis, which is also the
symmetry axis of the crystal. Since the problem is axi-
ally symmetric, there is no angular dependence, so
that uϕ = 0 and σrϕ = σϕz = 0, and the stress state is
uniquely determined by the four components of the
stress tensor σrr, σϕϕ, σzz, and σrz, which in terms of the
displacements have the form

(6)

and satisfy the equilibrium equations

(7)

where C11, C12, C13, C33, and C44 = C55 are six (mini-
mum number) necessary nonzero elastic moduli. An
example of this type of objects is provided by the so-
called c-loops with the Burgers vector b = 1/2[0001],
which are observed in zirconium under the electron
irradiation at the temperature T = 715 K. As was
shown by Elliott [12], the problem of the calculation of
the elastic field of a dislocation loop, which is deter-
mined by expressions (6) and (7), can be solved in
terms of two stress functions Φα (α = 1, 2) that satisfy
the equations

(8)
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and the coefficients vα are the roots of the quadratic
equation

(9)

In this case, we have

(10)

Substitution of expressions (10) into equalities (6)
gives the stress field of a dislocation loop in terms of
the stress functions Φα, and the desired quantity Sp
takes the form

(11)

By means of the Hankel transform G(ξ, z) = Φ(r,
z)J0(ξr)dr [2], equalities (8) can be reduced to the
ordinary differential equations of the form

(12)

which have the trivial solution Gα(ξ, z) = Aα(ξ) ×
exp(–ξz/ ) + Bα(ξ)exp(ξz/ ). Since all the
components of the displacements and stresses should
vanish at z → ∞, we obtain Bα = 0 and the coefficients
Aα are determined from the boundary conditions of
the problem. In our case, these conditions can be writ-
ten as follows [13]:

(13)

The second condition in formulas (13) follows from
the pure edge nature of the dislocation loop. The sign
for the z-component of the displacements uz was cho-
sen positive for the interstitial dislocation loop and
negative for the vacancy loop. Using the Hankel inver-
sion theorem [2] and the expression for the function
Gα(ξ, z), we obtain

(14)

And then, from the second boundary condition, we
have the relation
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Similarly, for the z-component of the displacements
uz, we obtain

(15)

and in the dimensionless variables t = ξR and ρ = r/R,
according to the first boundary condition, we have two
integral equations

These equations are satisfied under the condition

As a result, the stress functions Φα take the form

(16)

By substituting function (16) into formulas (10) and
(6), we obtain all the components of the elastic
stresses. We will not write out them in the explicit
form. This was done in [10]. Here, we are interested
only in the quantity Sp . From expressions (11) and
(16), we have
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Thus, the problem of the calculation of the elastic
interaction energy of a dilatation center with the pris-
matic dislocation loop under consideration is solved.

Next, we consider the same problem, but within
the formalism of the tensor Green’s function (5):

(18)

The first method, as applied to our problem, was
described in sufficient detail in the authors’ recent
paper [14]. Therefore, below the obtained results will
be presented in a concise manner. The Kröner method
was used in the work of Yoo [15] for the calculation of
the energy of interaction between two point defects
within the force dipole model, and his original method
of presentation is also relevant in our case. We intro-
duce the following notation:

Then, from expression (18), it follows that
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According to Kröner, we can write
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It turns out that all the functions Ki (i = 1, 2, 3) in our
case can be written in a compact form as follows
(slightly different from that used in [15]):

(21)

where vα are the roots of the same quadratic equation
(9), and the coefficients appearing in expressions (21)
have the form

(22)

Here, τk are the components of the unit vector τ = (r –

r')/|r – r'|, and the obvious equality  = 1 is taken
into account. Thus, the problem is reduced to the inte-
gration of expression (19) (with due regard for formu-
las (21) and (22)) over the plane of the circular dislo-
cation loop (recall that z' = 0, because the dislocation
loop lies in the basal plane of the crystal):

(23)

This form of writing expression (23) was not chosen
randomly. The Lifshitz–Rosenzweig method gives the
analogous result in a similar form [14] in the same
variables

(24)

The functions K( ), W( ), and V( ) are very cum-
bersome; therefore, they are given in the Appendix. It
is important that we have three versions of the solution
of the same problem. It is reasonable to compare
them. The numerical evaluations were performed for
zirconium. The experimental values of the elastic
moduli for zirconium according to [16] are as follows

α α α
α=

= τ = τ
− ∑

2
2 2 2
3 1 33

1

1 ( ), ( ),
| '|

i iK T T A F
r r

v

α α α α α
α= α=

= τ = τ∑ ∑ v
2 2

2 2
2 3 3 3

1 1

( ), ( ),T D F T C F

α
α

α

τ − − ττ ≡
τ + − τ

2 2
2 3 3
3 2 2 5/2

3 3

2 (1 )( ) ,
[ (1 )]

F v

v

α α α

α α α α

α α α

= − − + +
= −

= − −
= + −
= − −
= − −

2
66 11 33 44 13 44

66 11 12

44 11 44 66

13 44 44 66

1 11 44 66 1 3 1 2

2 11 44 66 2 3 2 1

[( )( ) ( ) ]/ ,
( )/2,

( )( )/ ,
( )( )/ ,

( )( ),
( )( ).

A C C C C C C E
C C C

D C C C C E
C C C C C E
E C C C
E C C C

v

v v

v

v v v v

v v v v

τ∑ 2
kk

=
π −

× τ + τ + + τ

∫
2

3

2 2 2
13 1 3 33 2 3 13 33 3 3

'( )
4 | ' |

[ ( ) ( ) ( ) ( )].
D

D
D
ij

S

b d rSpu

C T C T C C T

r
r r

= −
π −

⎡ ⎤
× − τ τ + τ − τ⎢ ⎥τ⎣ ⎦

τ = τ + τ + + τ

∫
2

3

2 2 2 2
3 3 3 3 2

3
2 2 2 2
3 13 3 33 3 13 33 3

'( )
4 | '|

(1 3 ) ( ) 2 (1 ) ,

( ) ( ) ( ) ( ) ( ).

D

D
D
ij

S

b d rSpu

dQQ
d

Q C K C W C C V

r
r r

τ2
3 τ2

3 τ2
3



938

PHYSICS OF THE SOLID STATE  Vol. 59  No. 5  2017

OSTAPCHUK, TROTSENKO

(in Mbar): C11 = 1.554, C12 = 0.672, C13 = 0.646, C33 =
1.725, and C55 = C44 = 0.363. The results of the com-
parison are presented in Figs. 1 and 2 in the dimen-
sionless cylindrical coordinates ρ = r/R and ζ = z/R.

In this case, we have  = ζ2/|r – r'|2 and |r – r'|2 = ρ2 +
ζ2 – 2ρρ'cos(ϕ – ϕ') + ρ'2. Because of the isotropy in
the basal plane, the result naturally does not depend
on the azimuthal angle ϕ. Therefore, it was assumed to
be zero. Formulas (17), (23), and (24) are reduced to a

single form: Sp  = I(ρ, ζ). Consequently, the

function IE(ρ, ζ) in Figs. 1 and 2 corresponds to for-
mula (17) (H.A. Elliott), the function IK(ρ, ζ)—to for-
mula (23) (Kröner), and the function IL, R(ρ, ζ)—to
formula (24) (Lifshitz–Rosenzweig). The figures
show the dependences of the functions IE, IK, and IL, R
on the relative distance ρ for two planes z = 0.1R and
z = 0.5R. It can be seen from these figures that there is
a perfect agreement of all three versions of solving the
problem. In our previous study [14], the function
IL, R(ρ, ζ) was compared with the isotropic approxi-
mation. It was found that there was a difference, even
though small, but it was. Here, we did not find any dif-
ference. But, this is only a special case. The majority
of dislocation loops have the Burgers vector inclined
to the plane of the loop. Since the Burgers vector can
always be decomposed into the prismatic component
(perpendicular to the loop plane) and the shear com-
ponent (lying in the loop plane), it was appropriate to
consider the similar problem for the pure shear com-
ponent.

τ2
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3. ELASTIC FIELD OF A SHEAR 
DISLOCATION LOOP LYING IN THE BASAL 

PLANE OF THE HEXAGONAL CRYSTAL

Since the axial symmetry of the problem in this
case is broken, the Hankel transform method is not
applicable. It remains now to use the Green’s function
method. Let the “x” axis of the basal plane “xy” be
directed along the shear component bS of the Burgers
vector of the dislocation loop. Then, from formula (5),
we obtain the following equation for the components
of the displacement vector:

(25)

where the integration, as before, is performed over the
dislocation loop area. And again, we will continue to
be interested only in the quantity Sp ; that is,
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(27)

= − + −∫
2

44 3,1 1,3( ) [ ( ') ( ')] ',
D

S S
i i i

S

u b C G G d rr r r r r

S
iju

= − + −∫
2

44 3, 1 1, 3( ) [ ( ') ( ')] ',
D

S S
ij i i i i

S

Spu b C G G d rr r r r r

α α α α α α α

αα=

τ τ=
π −

⎡ ⎤− + − +× ⎢ ⎥
− τ + τ⎢ ⎥⎣ ⎦

∫

∑

2 3 1
44 3

2 2

2 2 5/2
3 31

( ) '
4 | '|

( ) ( )3 ,
[ (1 ) ]

D

S
S
ij

S

bSpu C d r

C A D C B

r
r r

v v

v

Fig. 1. Dependences of the functions IE(ρ, ζ) (solid line),
IK(ρ, ζ) (dotted line), and IL, R(ρ, ζ) (dashed line) accord-
ing to formulas (17), (23), and (24) on the relative distance
ρ = r/R in the plane ζ = 0.1 of the zirconium crystal.

Fig. 2. Dependences of the functions IE(ρ, ζ) (solid line),
IK(ρ, ζ) (dotted line), and IL, R(ρ, ζ) (dashed line) accord-
ing to formulas (17), (23), and (24) on the relative distance
ρ = r/R in the plane ζ = 0.5 of the zirconium crystal.
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where

and all other quantities are defined above (see formu-
las (22)) (τk = (xk – )/|r – r'|). A similar problem was
solved in [11] in connection with the interpretation of
experimentally observed contrasts of dislocation
loops. The results obtained in [11] are presented in the
form of formulas for elastic stress components. They
are very cumbersome and expressed in terms of the
integrals  (17). Our formula is quite different. It is
fairly compact and easily perceptible. Hence, we
believe that this formula is absolutely original.

A similar expression to the same variables, accord-
ing to Lifshitz and Rosenzweig, has the form

(28)

The functions K( ), W( ), and V( ) are given in the
Appendix. In the dimensionless cylindrical coordi-
nates ρ = r/R and ζ = z/R, formulas (27) and (28) for
a circular dislocation loop, again, are reduced to the

form Sp  =  I(ρ, ζ, ϕ). Then, we numerically

compare the corresponding expression (27) for the
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function IK according to Kröner and expression (28)
for the function IL, R according to Lifshitz and Rosenz-
weig. The obtained results are presented in Figs. 3–5.
First, we should note the complete coincidence of the
results in both approaches, which indicates their
equivalence. But, in contrast to the case of a pure pris-
matic dislocation loop, here, there is a dependence on
the azimuthal angle ϕ in the basal plane of the hexag-
onal crystal. Figures 3 and 4 show such dependences

Fig. 3. Dependences of the functions IK(ρ, ζ, ϕ) (dotted
line) and IL, R(ρ, ζ, ϕ) (solid line) according to formulas
(27) and (28) on the azimuthal angle ϕ in the plane ζ = 0.5
of the zirconium crystal for the relative distance ρ = 1.5. 

Fig. 4. Dependences of the functions IK(ρ, ζ, ϕ) (dotted
line) and IL, R(ρ, ζ, ϕ) (solid line) according to formulas
(27) and (28) on the azimuthal angle ϕ in the plane ζ = 0.5
of the zirconium crystal for the relative distance ρ = 0.5. 

Fig. 5. Dependences of the functions IK(ρ, ζ, ϕ) (dotted
line) and IL, R(ρ, ζ, ϕ) (solid line) according to formulas
(27) and (28) on the relative distance ρ = r/R in the plane
ζ = 0.5 of the zirconium crystal for two azimuthal angles
ϕ = 0 and ϕ = 2π/5.
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of the functions IK and IL, R in the plane z = 0.5R of the
zirconium crystal for two values of r: r = 1.5R (outside
the dislocation loop) and r = 0.5R (inside the loop). It
can be seen that, in both cases, the interaction changes
the sign at angles ϕ = π/2 and ϕ = 3π/2. The dilatation
center is attracted in one half of the shear dislocation
loop and repelled in the other half. Figure 5 shows the
dependences of the functions IK and IL, R in the plane
z = 0.5R of the zirconium crystal for two angles ϕ = 0
and ϕ = 2π/5 on the relative distance ρ = r/R. The
interaction has the same sign, because the azimuthal
angle lies in the range 0 ≤ ϕ ≤ π/2, and the interaction
itself decreases in absolute value to zero at ϕ = π/2.
Thus, the question of the elastic interaction of a basal
dislocation loop in a hexagonal crystal with a dilata-
tion center can be considered as closed.

4. ELASTIC FIELD OF AN a-LOOP
IN ZIRCONIUM

The next object of our investigation is an a-loop in
zirconium with the Burgers vector b = 1/3〈 〉,
which lies in the { } plane. This form of disloca-
tion loops dominates under neutron irradiation. Such
dislocation loops, both vacancy-type and interstitial in
their nature, are perfect prismatic [17]. For a vacancy
a-loop, the direction of the Burgers vector coincides
with the direction of the normal to the plane of the
loop. Therefore, it is natural to choose the “x” axis of
the Cartesian coordinate system in the same direction.
Then, the displacement defined by expression (5) is
convenient to write in the form

(29)

(30)

The summation on the right-hand side of formula (30)
is performed over the index “α” running from 1 to 2
and over the index “i” running from 1 to 3. The con-
venience of this representation is that the first term in
formula (30) coincides, up to coefficients, with
expression (18), for which the result has already been
known both according to Kröner (formula (23)) and
according to Lifshitz–Rosenzweig (formula (24)).
Therefore, we should calculate only the sum Gi1,1i. The
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result of the calculations according to the Kröner
method is as follows:

(31)

where all the functions and constants were defined
above by formulas (21) and (22). A similar result of the
calculations according to the Lifshitz–Rosenzweig
method is given by the expressions

(32)

The functions K( ), W( ), and V( ) are given in the
Appendix. Here, it should be kept in mind that the dis-
location loop lies in the “yz” plane; i.e., τ1 = x/|r – r'|
and τ3 = (z – z')/|r – r'|. Therefore, the dimensionless
cylindrical coordinates used for a visual comparison of
formulas (31) and (32) for a circular dislocation loop
are as follows: ζ = x/R and ρ = r/R (r2 = y2 + z2, y =
rcosϕ, z = rsinϕ; i.e., ϕ is still the azimuthal angle, but
in the “yz” plane of the loop). As was done above,
expressions (31) and (32) are reduced to the standard

form Sp  = I(ρ, ζ, ϕ). Then, we numerically

compare the corresponding expression (31) for the
function IK according to Kröner and expression (32)
for the function IL, R according to Lifshitz and Rosenz-
weig. For zirconium, the obtained results are pre-
sented in Fig. 6 for the parameters ζ = 0.5 and ρ = 1.5
(the region outside the dislocation loop). And again,
as can be seen, there is a complete coincidence of the
results obtained within both approaches. In contrast to
the case of a basal prismatic dislocation loop, here, the
functions IK and IL, R have a weak dependence on the
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azimuthal angle ϕ, but the character of the interaction
(the sign of these functions) does not depend on the
angle ϕ. For the relative distance ρ = 0.5 (the region
above the dislocation loop), as in the case of a basal
dislocation loop, the interaction changes the sign,
whereas the weak angular dependence of the functions
IK and IL, R is retained. We did not present here this
dependence in order to not overload the figures. It
turns out that the dependences of the functions IK and
IL, R on the relative distance ρ for different values of ζ
almost completely coincide with the corresponding
dependence for the basal prismatic dislocation loop
(see Figs. 1, 2). And this is quite natural because of the
weak sensitivity of these functions to the angle ϕ.

5. RESULTS

Thus, this paper concludes a short series of publi-
cations [8, 9, 14] concerned with the method of the
calculation and with a particular application of the
tensor Green’s function within the approach proposed
by Lifshitz and Rosenzweig [5]. For cubic crystals, this
approach implies the expansion in the small anisot-
ropy parameter, and, according to [8, 18], the correc-
tions to [5] are quite significant. For hexagonal crys-
tals, there are two methods for the calculation of the
tensor Green’s function, namely, the Lifshitz–
Rosenzweig method [5, 9] and the Kröner method [6].
In both methods, the tensor Green’s function compo-
nents have a universal form, which is valid for any hex-
agonal crystal. However, their formulas are so differ-
ent in appearance that they can be compared with each
other only in terms of the results obtained in particular

applications. In the literature, the Kröner method is
commonly cited in relation to the elastic interaction
between two point defects or between a point defect
and an infinitesimal dislocation loop. Therefore, the
main objective of this study was to compare the results
obtained using the two methods with specific exam-
ples of the elastic interaction of point defects with dis-
location loops of finite sizes in real hexagonal close-
packed metals.

We have considered three types of vacancy disloca-
tion loops: the basal prismatic dislocation loop with
n = (0, 0, 1), bD = (0, 0, bD); the basal shear dislocation
loop with n = (0, 0, 1), bD = (bS, 0, 0); and the pris-
matic a-loop in zirconium with n = (1, 0, 0), bD = (bD,
0, 0) (bedding plane { }, the Burgers vector bD =
1/3〈 〉). For each type of dislocation loops, the
analytical expressions for the quantity Sp (r) (the
point defect was simulated by a dilatation center) were
obtained by the two methods using expressions (23),
(24), (27), (28), (31), and (32). In the case of a basal
prismatic dislocation loop, the similar expression was
obtained independently by solving the equilibrium
equations using the Elliott method [12] (formula (17)).
In order to compare the obtained results, we used the
circular shape of the dislocation loop. In the dimen-
sionless cylindrical coordinates, they are represented

in the form Sp  = I(ρ, ζ, ϕ). The numerical cal-

culations of the curves I(ρ, ζ, ϕ) were carried out for
zirconium. The results of these calculations are pre-
sented in Figs. 1–6. The main conclusion is that all the
methods used in the calculations are completely
equivalent to each other. However, taking into account
the limited applicability of the Elliott method [12], the
calculation technique is actually the tensor Green’s
function method within the Lifshitz–Rosenzweig and
Kröner approaches.

A simplifying factor in the above-considered cases
of dislocation loops is that the normal vector to the
plane of the dislocation loop, as well as the dislocation
loop Burgers vector, has only one component in the
Cartesian coordinate system. In general, this is not the
case. And, the initial expressions (5) then become
much more complicated. However, the calculation
technique remains the same and does not lead to fun-
damental mathematical difficulties.

With the knowledge of the energy of elastic interac-
tion of a point defect with a dislocation loop, we can
calculate the diffusion fluxes of radiation-induced
point defects onto the loop [19, 20], as well as the pref-
erence (bias) factor for a specific type of point defects.
This factor is a very important characteristic of dislo-
cations, in terms of which proper explanations have
been found for many phenomena, such as swelling,
radiation creep, radiation hardening of structural
materials of nuclear reactors [21–24], and others.
Here, however, we should note the following. In all the

1120
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D
iju

π4

Db
R

Fig. 6. Dependences of the functions IK(ρ, ζ, ϕ) (solid
line) and IL, R(ρ, ζ, ϕ) (dotted line) according to formulas
(31) and (32) on the azimuthal angle φ for the a-loop in the
plane ζ = 0.5 of the zirconium crystal for the relative dis-
tance ρ = 1.5.
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relevant theories, the dislocation bias factor was calcu-
lated under the assumption of an elastically isotropic
crystal, when the energy of interaction of point defects
with a rectilinear dislocation or a loop is a harmonic
function. For a hexagonal crystal, this is not the case.
Such a conclusion follows, for example, from expres-
sion (17) for a basal prismatic dislocation loop. There-
fore, the corresponding diffusion problem [19, 20] is
complicated by the presence of the additional term,
and the authors’ conclusions regarding the depen-
dence of the bias factor on the dislocation loop radius,
the type of dislocation loop, and the ratio of the dila-
tation volumes of point defects can be changed. But,
this is already another problem.

APPENDIX

where the functions Φ( ), F( ), N( ), and M( )
are related to the tensor Green’s function components
by the following expressions:
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